84 lines
2.2 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
collection = math.collection,
isNumber = util.number.isNumber,
isInteger = util.number.isInteger;
/**
* The Stirling numbers of the second kind, counts the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets.
* stirlingS2 only take integer arguments.
* The following condition must be enforced: k <= n.
*
* Syntax:
*
* math.stirlingS2(n, k)
*
* Examples:
*
* math.stirlingS2(5, 3); //returns 25
*
* If n = k or k = 1, then s(n,k) = 1
*
* @param {Number | BigNumber} n Total number of objects in the set
* @param {Number | BigNumber} k Number of objects in the subset
* @return {Number | BigNumber} S(n,k)
*/
math.stirlingS2 = function stirlingS2 (n, k) {
var result = 0;
var arity = arguments.length;
if (arity != 2) {
throw new math.error.ArgumentsError('stirlingS2', arguments.length, 2);
}
if ((isNumber(n) && isNumber(k)) || n instanceof BigNumber) {
if (!isInteger(n) || n < 0 || !isInteger(k) || k < 0) {
throw new TypeError('Positive integer value expected in function stirlingS2');
}
else if (k > n) {
throw new TypeError('k must be less than or equal to n');
}
if(n instanceof BigNumber) {
k = BigNumber.convert(k);
}
// 1/k! Sum(i=0 -> k) [(-1)^(k-i)*C(k,j)* i^n]
var kFactorial = math.factorial(k);
var denom = math.divide(1, kFactorial);
var result = 0;
for(var i = 0; i <= k; i++) {
var negativeOne = math.pow(-1, math.subtract(k,i));
var kChooseI = math.combinations(k,i);
var iPower = Math.pow(i,n);
result = math.chain(kChooseI)
.multiply(iPower)
.multiply(negativeOne)
.add(result)
.done();
}
return math.divide(result,kFactorial);
} else {
throw new TypeError('Integer values are expected in stirlingS2')
}
};
/**
* Test whether BigNumber n is a positive integer
* @param {BigNumber} n
* @returns {boolean} isPositiveInteger
*/
var isPositiveInteger = function(n) {
return n.isInteger() && n.gte(0);
};
};