247 lines
6.4 KiB
JavaScript

'use strict';
function factory (type, config, load, typed) {
var matrix = load(require('../../type/matrix/function/matrix'));
var algorithm01 = load(require('../../type/matrix/util/algorithm01'));
var algorithm02 = load(require('../../type/matrix/util/algorithm02'));
var algorithm06 = load(require('../../type/matrix/util/algorithm06'));
var algorithm11 = load(require('../../type/matrix/util/algorithm11'));
var algorithm13 = load(require('../../type/matrix/util/algorithm13'));
var algorithm14 = load(require('../../type/matrix/util/algorithm14'));
/**
* Calculate the nth root of a value.
* The principal nth root of a positive real number A, is the positive real
* solution of the equation
*
* x^root = A
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.nthRoot(a)
* math.nthRoot(a, root)
*
* Examples:
*
* math.nthRoot(9, 2); // returns 3, as 3^2 == 9
* math.sqrt(9); // returns 3, as 3^2 == 9
* math.nthRoot(64, 3); // returns 4, as 4^3 == 64
*
* See also:
*
* sqrt, pow
*
* @param {Number | BigNumber | Boolean | Array | Matrix | null} a
* Value for which to calculate the nth root
* @param {Number | BigNumber | Boolean | null} [root=2] The root.
* @return {Number | Complex | Array | Matrix} Returns the nth root of `a`
*/
var nthRoot = typed('nthRoot', {
'number': function (x) {
return _nthRoot(x, 2);
},
'number, number': _nthRoot,
'BigNumber': function (x) {
return _bigNthRoot(x, new type.BigNumber(2));
},
'BigNumber, BigNumber': _bigNthRoot,
'Array | Matrix': function (x) {
return nthRoot(x, 2);
},
'Matrix, Matrix': function (x, y) {
// result
var c;
// process matrix storage
switch (x.storage()) {
case 'sparse':
switch (y.storage()) {
case 'sparse':
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse + sparse
c = algorithm06(x, y, nthRoot);
}
else {
// throw exception
throw new Error('Root must be non-zero');
}
break;
default:
// sparse + dense
c = algorithm02(y, x, nthRoot, true);
break;
}
break;
default:
switch (y.storage()) {
case 'sparse':
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// dense + sparse
c = algorithm01(x, y, nthRoot, false);
}
else {
// throw exception
throw new Error('Root must be non-zero');
}
break;
default:
// dense + dense
c = algorithm13(x, y, nthRoot);
break;
}
break;
}
return c;
},
'Array, Array': function (x, y) {
// use matrix implementation
return nthRoot(matrix(x), matrix(y)).valueOf();
},
'Array, Matrix': function (x, y) {
// use matrix implementation
return nthRoot(matrix(x), y);
},
'Matrix, Array': function (x, y) {
// use matrix implementation
return nthRoot(x, matrix(y));
},
'Matrix, number | BigNumber': function (x, y) {
// result
var c;
// check storage format
switch (x.storage()) {
case 'sparse':
c = algorithm11(x, y, nthRoot, false);
break;
default:
c = algorithm14(x, y, nthRoot, false);
break;
}
return c;
},
'number | BigNumber, Matrix': function (x, y) {
// result
var c;
// check storage format
switch (y.storage()) {
case 'sparse':
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse - scalar
c = algorithm11(y, x, nthRoot, true);
}
else {
// throw exception
throw new Error('Root must be non-zero');
}
break;
default:
c = algorithm14(y, x, nthRoot, true);
break;
}
return c;
},
'Array, number | BigNumber': function (x, y) {
// use matrix implementation
return nthRoot(matrix(x), y).valueOf();
},
'number | BigNumber, Array': function (x, y) {
// use matrix implementation
return nthRoot(x, matrix(y)).valueOf();
}
});
return nthRoot;
/**
* Calculate the nth root of a for BigNumbers, solve x^root == a
* http://rosettacode.org/wiki/Nth_root#JavaScript
* @param {BigNumber} a
* @param {BigNumber} root
* @private
*/
function _bigNthRoot(a, root) {
var zero = new type.BigNumber(0);
var one = new type.BigNumber(1);
var inv = root.isNegative();
if (inv) root = root.negated();
if (root.isZero()) throw new Error('Root must be non-zero');
if (a.isNegative() && !root.abs().mod(2).equals(1)) throw new Error('Root must be odd when a is negative.');
// edge cases zero and infinity
if (a.isZero()) return zero;
if (!a.isFinite())
{
return inv ? zero : a;
}
var x = one; // Initial guess
var i = 0;
var iMax = 100;
do {
var xPrev = x;
var delta = a.div(x.pow(root.minus(1))).minus(x).div(root);
x = x.plus(delta);
i++;
}
while (!x.equals(xPrev) && i < iMax);
return inv ? one.div(x) : x;
}
}
/**
* Calculate the nth root of a, solve x^root == a
* http://rosettacode.org/wiki/Nth_root#JavaScript
* @param {number} a
* @param {number} root
* @private
*/
function _nthRoot(a, root) {
var inv = root < 0;
if (inv) root = -root;
if (root === 0) throw new Error('Root must be non-zero');
if (a < 0 && (Math.abs(root) % 2 != 1)) throw new Error('Root must be odd when a is negative.');
// edge cases zero and infinity
if (a == 0) return 0;
if (!Number.isFinite(a)) {
return inv ? 0 : a;
}
var epsilon = 1e-16;
var x = 1; // Initial guess
var i = 0;
var iMax = 100;
do {
var delta = (a / Math.pow(x, root - 1) - x) / root;
x = x + delta;
i++;
}
while (Math.abs(delta) > epsilon && i < iMax);
return inv ? 1 / x : x;
}
exports.name = 'nthRoot';
exports.factory = factory;