mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
193 lines
4.8 KiB
JavaScript
193 lines
4.8 KiB
JavaScript
'use strict';
|
|
|
|
var isInteger = require('../../util/number').isInteger;
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var matrix = load(require('../../type/matrix/function/matrix'));
|
|
|
|
var algorithm01 = load(require('../../type/matrix/util/algorithm01'));
|
|
var algorithm04 = load(require('../../type/matrix/util/algorithm04'));
|
|
var algorithm10 = load(require('../../type/matrix/util/algorithm10'));
|
|
var algorithm13 = load(require('../../type/matrix/util/algorithm13'));
|
|
var algorithm14 = load(require('../../type/matrix/util/algorithm14'));
|
|
|
|
/**
|
|
* Calculate the greatest common divisor for two or more values or arrays.
|
|
*
|
|
* For matrices, the function is evaluated element wise.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.gcd(a, b)
|
|
* math.gcd(a, b, c, ...)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.gcd(8, 12); // returns 4
|
|
* math.gcd(-4, 6); // returns 2
|
|
* math.gcd(25, 15, -10); // returns 5
|
|
*
|
|
* math.gcd([8, -4], [12, 6]); // returns [4, 2]
|
|
*
|
|
* See also:
|
|
*
|
|
* lcm, xgcd
|
|
*
|
|
* @param {... Number | BigNumber | Boolean | Array | Matrix | null} args Two or more integer numbers
|
|
* @return {Number | BigNumber | Array | Matrix} The greatest common divisor
|
|
*/
|
|
var gcd = typed('gcd', {
|
|
|
|
'number, number': _gcd,
|
|
|
|
'BigNumber, BigNumber': _gcdBigNumber,
|
|
|
|
'Matrix, Matrix': function (x, y) {
|
|
// result
|
|
var c;
|
|
|
|
// process matrix storage
|
|
switch (x.storage()) {
|
|
case 'sparse':
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
// sparse + sparse
|
|
c = algorithm04(x, y, gcd);
|
|
break;
|
|
default:
|
|
// sparse + dense
|
|
c = algorithm01(y, x, gcd, true);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
// dense + sparse
|
|
c = algorithm01(x, y, gcd, false);
|
|
break;
|
|
default:
|
|
// dense + dense
|
|
c = algorithm13(x, y, gcd);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'Array, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return gcd(matrix(x), matrix(y)).valueOf();
|
|
},
|
|
|
|
'Array, Matrix': function (x, y) {
|
|
// use matrix implementation
|
|
return gcd(matrix(x), y);
|
|
},
|
|
|
|
'Matrix, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return gcd(x, matrix(y));
|
|
},
|
|
|
|
'Matrix, number | BigNumber': function (x, y) {
|
|
// result
|
|
var c;
|
|
// check storage format
|
|
switch (x.storage()) {
|
|
case 'sparse':
|
|
c = algorithm10(x, y, gcd, false);
|
|
break;
|
|
default:
|
|
c = algorithm14(x, y, gcd, false);
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'number | BigNumber, Matrix': function (x, y) {
|
|
// result
|
|
var c;
|
|
// check storage format
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
c = algorithm10(y, x, gcd, true);
|
|
break;
|
|
default:
|
|
c = algorithm14(y, x, gcd, true);
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'Array, number | BigNumber': function (x, y) {
|
|
// use matrix implementation
|
|
return algorithm14(matrix(x), y, gcd, false).valueOf();
|
|
},
|
|
|
|
'number | BigNumber, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return algorithm14(matrix(y), x, gcd, true).valueOf();
|
|
},
|
|
|
|
// TODO: need a smarter notation here
|
|
'Array | Matrix | number | BigNumber, Array | Matrix | number | BigNumber, ...Array | Matrix | number | BigNumber': function (a, b, args) {
|
|
var res = gcd(a, b);
|
|
for (var i = 0; i < args.length; i++) {
|
|
res = gcd(res, args[i]);
|
|
}
|
|
return res;
|
|
}
|
|
});
|
|
|
|
return gcd;
|
|
|
|
/**
|
|
* Calculate gcd for BigNumbers
|
|
* @param {BigNumber} a
|
|
* @param {BigNumber} b
|
|
* @returns {BigNumber} Returns greatest common denominator of a and b
|
|
* @private
|
|
*/
|
|
function _gcdBigNumber(a, b) {
|
|
if (!a.isInt() || !b.isInt()) {
|
|
throw new Error('Parameters in function gcd must be integer numbers');
|
|
}
|
|
|
|
// http://en.wikipedia.org/wiki/Euclidean_algorithm
|
|
var zero = new type.BigNumber(0);
|
|
while (!b.isZero()) {
|
|
var r = a.mod(b);
|
|
a = b;
|
|
b = r;
|
|
}
|
|
return a.lt(zero) ? a.neg() : a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate gcd for numbers
|
|
* @param {number} a
|
|
* @param {number} b
|
|
* @returns {number} Returns the greatest common denominator of a and b
|
|
* @private
|
|
*/
|
|
function _gcd(a, b) {
|
|
if (!isInteger(a) || !isInteger(b)) {
|
|
throw new Error('Parameters in function gcd must be integer numbers');
|
|
}
|
|
|
|
// http://en.wikipedia.org/wiki/Euclidean_algorithm
|
|
var r;
|
|
while (b != 0) {
|
|
r = a % b;
|
|
a = b;
|
|
b = r;
|
|
}
|
|
return (a < 0) ? -a : a;
|
|
}
|
|
|
|
exports.name = 'gcd';
|
|
exports.factory = factory; |