157 lines
3.9 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
collection = require('../../type/collection'),
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isInteger = util.number.isInteger,
isCollection = collection.isCollection;
/**
* Calculate the least common multiple for two or more values or arrays.
*
* lcm is defined as:
*
* lcm(a, b) = abs(a * b) / gcd(a, b)
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.lcm(a, b)
* math.lcm(a, b, c, ...)
*
* Examples:
*
* math.lcm(4, 6); // returns 12
* math.lcm(6, 21); // returns 42
* math.lcm(6, 21, 5); // returns 210
*
* math.lcm([4, 6], [6, 21]); // returns [12, 42]
*
* See also:
*
* gcd, xgcd
*
* @param {... Number | BigNumber | Boolean | Array | Matrix | null} args Two or more integer numbers
* @return {Number | BigNumber | Array | Matrix} The least common multiple
*/
math.lcm = function lcm(args) {
var a = arguments[0],
b = arguments[1],
t;
if (arguments.length == 2) {
// two arguments
if (isNumber(a) && isNumber(b)) {
if (!isInteger(a) || !isInteger(b)) {
throw new Error('Parameters in function lcm must be integer numbers');
}
if (a == 0 || b == 0) {
return 0;
}
// http://en.wikipedia.org/wiki/Euclidean_algorithm
// evaluate lcm here inline to reduce overhead
var prod = a * b;
while (b != 0) {
t = b;
b = a % t;
a = t;
}
return Math.abs(prod / a);
}
// evaluate lcm element wise
if (isCollection(a) || isCollection(b)) {
return collection.deepMap2(a, b, lcm);
}
if (a instanceof BigNumber) {
// try to convert to big number
if (isNumber(b)) {
b = BigNumber.convert(b);
}
else if (isBoolean(b) || b === null) {
b = new BigNumber(b ? 1 : 0);
}
if (b instanceof BigNumber) {
return _bigLcm(a, b);
}
// downgrade to Number
return lcm(a.toNumber(), b);
}
if (b instanceof BigNumber) {
// try to convert to big number
if (isNumber(a)) {
a = BigNumber.convert(a);
}
else if (isBoolean(a) || a === null) {
a = new BigNumber(a ? 1 : 0);
}
if (a instanceof BigNumber) {
return _bigLcm(a, b);
}
// downgrade to Number
return lcm(a.toNumber(), b);
}
if (isBoolean(a) || a === null) {
return lcm(+a, b);
}
if (isBoolean(b) || b === null) {
return lcm(a, +b);
}
throw new math.error.UnsupportedTypeError('lcm', math['typeof'](a), math['typeof'](b));
}
if (arguments.length > 2) {
// multiple arguments. Evaluate them iteratively
for (var i = 1; i < arguments.length; i++) {
a = lcm(a, arguments[i]);
}
return a;
}
// zero or one argument
throw new SyntaxError('Function lcm expects two or more arguments');
};
/**
* Calculate lcm for BigNumbers
* @param {BigNumber} a
* @param {BigNumber} b
* @returns {BigNumber} the least common multiple of a and b
* @private
*/
function _bigLcm(a, b) {
if (!a.isInt() || !b.isInt()) {
throw new Error('Parameters in function lcm must be integer numbers');
}
if (a.isZero() || b.isZero()) {
return new BigNumber(0);
}
// http://en.wikipedia.org/wiki/Euclidean_algorithm
// evaluate lcm here inline to reduce overhead
var prod = a.times(b);
while (!b.isZero()) {
var t = b;
b = a.mod(t);
a = t;
}
return prod.div(a).abs();
}
};