mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
281 lines
7.3 KiB
JavaScript
281 lines
7.3 KiB
JavaScript
'use strict';
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var matrix = load(require('../../type/matrix/function/matrix'));
|
|
|
|
var algorithm01 = load(require('../../type/matrix/utils/algorithm01'));
|
|
var algorithm02 = load(require('../../type/matrix/utils/algorithm02'));
|
|
var algorithm06 = load(require('../../type/matrix/utils/algorithm06'));
|
|
var algorithm11 = load(require('../../type/matrix/utils/algorithm11'));
|
|
var algorithm13 = load(require('../../type/matrix/utils/algorithm13'));
|
|
var algorithm14 = load(require('../../type/matrix/utils/algorithm14'));
|
|
|
|
/**
|
|
* Calculate the nth root of a value.
|
|
* The principal nth root of a positive real number A, is the positive real
|
|
* solution of the equation
|
|
*
|
|
* x^root = A
|
|
*
|
|
* For matrices, the function is evaluated element wise.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.nthRoot(a)
|
|
* math.nthRoot(a, root)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.nthRoot(9, 2); // returns 3, as 3^2 == 9
|
|
* math.sqrt(9); // returns 3, as 3^2 == 9
|
|
* math.nthRoot(64, 3); // returns 4, as 4^3 == 64
|
|
*
|
|
* See also:
|
|
*
|
|
* sqrt, pow
|
|
*
|
|
* @param {number | BigNumber | Array | Matrix | Complex} a
|
|
* Value for which to calculate the nth root
|
|
* @param {number | BigNumber} [root=2] The root.
|
|
* @return {number | Complex | Array | Matrix} Returns the nth root of `a`
|
|
*/
|
|
var nthRoot = typed('nthRoot', {
|
|
|
|
'number': function (x) {
|
|
return _nthRoot(x, 2);
|
|
},
|
|
'number, number': _nthRoot,
|
|
|
|
'BigNumber': function (x) {
|
|
return _bigNthRoot(x, new type.BigNumber(2));
|
|
},
|
|
'Complex' : function(x) {
|
|
return _nthComplexRoot(x, 2);
|
|
},
|
|
'Complex, number' : _nthComplexRoot,
|
|
'BigNumber, BigNumber': _bigNthRoot,
|
|
|
|
'Array | Matrix': function (x) {
|
|
return nthRoot(x, 2);
|
|
},
|
|
|
|
'Matrix, Matrix': function (x, y) {
|
|
// result
|
|
var c;
|
|
|
|
// process matrix storage
|
|
switch (x.storage()) {
|
|
case 'sparse':
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
// density must be one (no zeros in matrix)
|
|
if (y.density() === 1) {
|
|
// sparse + sparse
|
|
c = algorithm06(x, y, nthRoot);
|
|
}
|
|
else {
|
|
// throw exception
|
|
throw new Error('Root must be non-zero');
|
|
}
|
|
break;
|
|
default:
|
|
// sparse + dense
|
|
c = algorithm02(y, x, nthRoot, true);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
// density must be one (no zeros in matrix)
|
|
if (y.density() === 1) {
|
|
// dense + sparse
|
|
c = algorithm01(x, y, nthRoot, false);
|
|
}
|
|
else {
|
|
// throw exception
|
|
throw new Error('Root must be non-zero');
|
|
}
|
|
break;
|
|
default:
|
|
// dense + dense
|
|
c = algorithm13(x, y, nthRoot);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'Array, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return nthRoot(matrix(x), matrix(y)).valueOf();
|
|
},
|
|
|
|
'Array, Matrix': function (x, y) {
|
|
// use matrix implementation
|
|
return nthRoot(matrix(x), y);
|
|
},
|
|
|
|
'Matrix, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return nthRoot(x, matrix(y));
|
|
},
|
|
|
|
'Matrix, number | BigNumber': function (x, y) {
|
|
// result
|
|
var c;
|
|
// check storage format
|
|
switch (x.storage()) {
|
|
case 'sparse':
|
|
c = algorithm11(x, y, nthRoot, false);
|
|
break;
|
|
default:
|
|
c = algorithm14(x, y, nthRoot, false);
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'number | BigNumber, Matrix': function (x, y) {
|
|
// result
|
|
var c;
|
|
// check storage format
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
// density must be one (no zeros in matrix)
|
|
if (y.density() === 1) {
|
|
// sparse - scalar
|
|
c = algorithm11(y, x, nthRoot, true);
|
|
}
|
|
else {
|
|
// throw exception
|
|
throw new Error('Root must be non-zero');
|
|
}
|
|
break;
|
|
default:
|
|
c = algorithm14(y, x, nthRoot, true);
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'Array, number | BigNumber': function (x, y) {
|
|
// use matrix implementation
|
|
return nthRoot(matrix(x), y).valueOf();
|
|
},
|
|
|
|
'number | BigNumber, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return nthRoot(x, matrix(y)).valueOf();
|
|
}
|
|
});
|
|
|
|
nthRoot.toTex = '\\sqrt[${args[1]}]{${args[0]}}';
|
|
|
|
return nthRoot;
|
|
|
|
/**
|
|
* Calculate the nth root of a for BigNumbers, solve x^root == a
|
|
* http://rosettacode.org/wiki/Nth_root#JavaScript
|
|
* @param {BigNumber} a
|
|
* @param {BigNumber} root
|
|
* @private
|
|
*/
|
|
function _bigNthRoot(a, root) {
|
|
var zero = new type.BigNumber(0);
|
|
var one = new type.BigNumber(1);
|
|
var inv = root.isNegative();
|
|
if (inv) root = root.negated();
|
|
|
|
if (root.isZero()) throw new Error('Root must be non-zero');
|
|
if (a.isNegative() && !root.abs().mod(2).equals(1)) throw new Error('Root must be odd when a is negative.');
|
|
|
|
// edge cases zero and infinity
|
|
if (a.isZero()) return zero;
|
|
if (!a.isFinite())
|
|
{
|
|
return inv ? zero : a;
|
|
}
|
|
|
|
var x = one; // Initial guess
|
|
var i = 0;
|
|
var iMax = 10000;
|
|
do {
|
|
var xPrev = x;
|
|
var delta = a.div(x.pow(root.minus(1))).minus(x).div(root);
|
|
x = x.plus(delta);
|
|
i++;
|
|
}
|
|
while (!x.equals(xPrev) && i < iMax);
|
|
|
|
if (!x.equals(xPrev)) {
|
|
throw new Error('Function nthRoot failed to converge');
|
|
}
|
|
|
|
return inv ? one.div(x) : x;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate the nth root of a, solve x^root == a
|
|
* http://rosettacode.org/wiki/Nth_root#JavaScript
|
|
* @param {number} a
|
|
* @param {number} root
|
|
* @private
|
|
*/
|
|
function _nthRoot(a, root) {
|
|
var inv = root < 0;
|
|
if (inv) root = -root;
|
|
|
|
if (root === 0) throw new Error('Root must be non-zero');
|
|
if (a < 0 && (Math.abs(root) % 2 != 1)) throw new Error('Root must be odd when a is negative.');
|
|
|
|
// edge cases zero and infinity
|
|
if (a == 0) return 0;
|
|
if (!Number.isFinite(a)) {
|
|
return inv ? 0 : a;
|
|
}
|
|
|
|
var x = 1; // Initial guess
|
|
var xPrev = 1;
|
|
var i = 0;
|
|
var iMax = 10000;
|
|
do {
|
|
var delta = (a / Math.pow(x, root - 1) - x) / root;
|
|
xPrev = x;
|
|
x = x + delta;
|
|
i++;
|
|
}
|
|
while (xPrev !== x && i < iMax);
|
|
|
|
if (xPrev !== x) {
|
|
throw new Error('Function nthRoot failed to converge');
|
|
}
|
|
|
|
return inv ? 1 / x : x;
|
|
}
|
|
|
|
/**
|
|
* Calculate the nth root of a Complex Number a using De Moviers Theorem.
|
|
* @param {Complex} a
|
|
* @param {number} root
|
|
* @return {Array} array or n Complex Roots in Polar Form.
|
|
*/
|
|
function _nthComplexRoot(a, root) {
|
|
if (root < 0) throw new Error('Root must be greater than zero');
|
|
if (root === 0) throw new Error('Root must be non-zero');
|
|
if (root % 1 !== 0) throw new Error('Root must be an integer');
|
|
var polar = a.toPolar();
|
|
var roots = [];
|
|
var r = Math.pow(polar.r, 1/root);
|
|
for(var k = 0; k < root; k++) {
|
|
roots.push({r: r, phi: (polar.phi + 2 * Math.PI * k)/root});
|
|
}
|
|
return roots;
|
|
}
|
|
|
|
exports.name = 'nthRoot';
|
|
exports.factory = factory;
|