mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-25 15:07:57 +00:00
* Added matrix functions `schur`, `sylvester` and `lyap` * Added docs for `schur`, `sylvester` and `lyap` * Added unit tests for `schur`, `sylvester` and `lyap` * Fixed lint and tests errors * fixed typescript and added Matrix + Array tests * lint fixed * fixed example in sylvester.js doc * Fixed docs and ci * fixed definition of lyap and sylvester * remark on diff defs for lyap * rm a trailing space Co-authored-by: Jos de Jong <wjosdejong@gmail.com>
146 lines
4.0 KiB
JavaScript
146 lines
4.0 KiB
JavaScript
import { factory } from '../../utils/factory.js'
|
|
|
|
const name = 'sylvester'
|
|
const dependencies = [
|
|
'typed',
|
|
'schur',
|
|
'matrixFromColumns',
|
|
'matrix',
|
|
'multiply',
|
|
'range',
|
|
'concat',
|
|
'transpose',
|
|
'index',
|
|
'subset',
|
|
'add',
|
|
'subtract',
|
|
'identity',
|
|
'lusolve',
|
|
'abs'
|
|
]
|
|
|
|
export const createSylvester = /* #__PURE__ */ factory(name, dependencies, (
|
|
{
|
|
typed,
|
|
schur,
|
|
matrixFromColumns,
|
|
matrix,
|
|
multiply,
|
|
range,
|
|
concat,
|
|
transpose,
|
|
index,
|
|
subset,
|
|
add,
|
|
subtract,
|
|
identity,
|
|
lusolve,
|
|
abs
|
|
}
|
|
) => {
|
|
/**
|
|
*
|
|
* Solves the real-valued Sylvester equation AX+XB=C for X, where A, B and C are
|
|
* matrices of appropriate dimensions, being A and B squared. Notice that other
|
|
* equivalent definitions for the Sylvester equation exist and this function
|
|
* assumes the one presented in the original publication of the the Bartels-
|
|
* Stewart algorithm, which is implemented by this function.
|
|
* https://en.wikipedia.org/wiki/Sylvester_equation
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.sylvester(A, B, C)
|
|
*
|
|
* Examples:
|
|
*
|
|
* const A = [[-1, -2], [1, 1]]
|
|
* const B = [[2, -1], [1, -2]]
|
|
* const C = [[-3, 2], [3, 0]]
|
|
* math.sylvester(A, B, C) // returns DenseMatrix [[-0.25, 0.25], [1.5, -1.25]]
|
|
*
|
|
* See also:
|
|
*
|
|
* schur, lyap
|
|
*
|
|
* @param {Matrix | Array} A Matrix A
|
|
* @param {Matrix | Array} B Matrix B
|
|
* @param {Matrix | Array} C Matrix C
|
|
* @return {Matrix | Array} Matrix X, solving the Sylvester equation
|
|
*/
|
|
return typed(name, {
|
|
'Matrix, Matrix, Matrix': _sylvester,
|
|
'Array, Matrix, Matrix': function (A, B, C) {
|
|
return _sylvester(matrix(A), B, C)
|
|
},
|
|
'Array, Array, Matrix': function (A, B, C) {
|
|
return _sylvester(matrix(A), matrix(B), C)
|
|
},
|
|
'Array, Matrix, Array': function (A, B, C) {
|
|
return _sylvester(matrix(A), B, matrix(C))
|
|
},
|
|
'Matrix, Array, Matrix': function (A, B, C) {
|
|
return _sylvester(A, matrix(B), C)
|
|
},
|
|
'Matrix, Array, Array': function (A, B, C) {
|
|
return _sylvester(A, matrix(B), matrix(C))
|
|
},
|
|
'Matrix, Matrix, Array': function (A, B, C) {
|
|
return _sylvester(A, B, matrix(C))
|
|
},
|
|
'Array, Array, Array': function (A, B, C) {
|
|
return _sylvester(matrix(A), matrix(B), matrix(C)).toArray()
|
|
}
|
|
})
|
|
function _sylvester (A, B, C) {
|
|
const n = B.size()[0]
|
|
const m = A.size()[0]
|
|
|
|
const sA = schur(A)
|
|
const F = sA.T
|
|
const U = sA.U
|
|
const sB = schur(multiply(-1, B))
|
|
const G = sB.T
|
|
const V = sB.U
|
|
const D = multiply(multiply(transpose(U), C), V)
|
|
const all = range(0, m)
|
|
const y = []
|
|
|
|
const hc = (a, b) => concat(a, b, 1)
|
|
const vc = (a, b) => concat(a, b, 0)
|
|
|
|
for (let k = 0; k < n; k++) {
|
|
if (k < (n - 1) && abs(subset(G, index(k + 1, k))) > 1e-5) {
|
|
let RHS = vc(subset(D, index(all, k)), subset(D, index(all, k + 1)))
|
|
for (let j = 0; j < k; j++) {
|
|
RHS = add(RHS,
|
|
vc(multiply(y[j], subset(G, index(j, k))), multiply(y[j], subset(G, index(j, k + 1))))
|
|
)
|
|
}
|
|
const gkk = multiply(identity(m), multiply(-1, subset(G, index(k, k))))
|
|
const gmk = multiply(identity(m), multiply(-1, subset(G, index(k + 1, k))))
|
|
const gkm = multiply(identity(m), multiply(-1, subset(G, index(k, k + 1))))
|
|
const gmm = multiply(identity(m), multiply(-1, subset(G, index(k + 1, k + 1))))
|
|
const LHS = vc(
|
|
hc(add(F, gkk), gmk),
|
|
hc(gkm, add(F, gmm))
|
|
)
|
|
const yAux = lusolve(LHS, RHS)
|
|
y[k] = yAux.subset(index(range(0, m), 0))
|
|
y[k + 1] = yAux.subset(index(range(m, 2 * m), 0))
|
|
k++
|
|
} else {
|
|
let RHS = subset(D, index(all, k))
|
|
for (let j = 0; j < k; j++) { RHS = add(RHS, multiply(y[j], subset(G, index(j, k)))) }
|
|
const gkk = subset(G, index(k, k))
|
|
const LHS = subtract(F, multiply(gkk, identity(m)))
|
|
|
|
y[k] = lusolve(LHS, RHS)
|
|
}
|
|
}
|
|
const Y = matrix(matrixFromColumns(...y))
|
|
const X = multiply(U, multiply(Y, transpose(V)))
|
|
|
|
return X
|
|
}
|
|
})
|