223 lines
5.6 KiB
JavaScript

'use strict';
module.exports = function (math, config) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
collection = require('../../type/collection'),
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isNumber = util.number.isNumber,
isInteger = util.number.isInteger,
isCollection = collection.isCollection;
/**
* Compute the gamma function of a value using Lanczos approximation.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.gamma(n)
*
* Examples:
*
* math.gamma(5); // returns 24
* math.gamma(-0.5); // returns 2.2181595437577
* math.gamma(math.i); // returns -0.15494982830181 - 0.49801566811836i
*
* See also:
*
* combinations, factorial, permutations
*
* @param {Number | BigNumber | Array | Matrix | Boolean | null} n An integer number
* @return {Number | BigNumber | Array | Matrix} The gamma of `n`
*/
math.gamma = function gamma (n) {
var g = 7;
var t, x, prev, result, ltHalf;
if (arguments.length != 1) {
throw new math.error.ArgumentsError('gamma', arguments.length, 1);
}
if (isNumber(n)) {
if (isInteger(n)) {
if (n <= 0) {
return isFinite(n)
? Infinity
: NaN;
}
return math.factorial(n-1);
}
ltHalf = n < 0.5;
if (ltHalf) {
prev = n;
n = 1 - n;
}
--n;
x = p[0];
for (var i = 1; i < g + 2; ++i) {
x += p[i] / (n+i);
}
t = n + g + 0.5;
result = Math.sqrt(2*Math.PI) * Math.pow(t, n+0.5) * Math.exp(-t) * x;
if (!ltHalf) {
return result;
}
return Math.PI / (Math.sin(Math.PI * prev)*result)
}
if (isComplex(n)) {
if (n.im == 0) {
return gamma(n.re);
}
ltHalf = n.re < 0.5;
if (ltHalf) {
prev = new Complex(n.re, n.im);
n = new Complex((1 - n.re) - 1, -n.im);
} else {
n = new Complex(n.re - 1, n.im);
}
x = new Complex(p[0], 0);
for (var i = 1; i < g + 2; ++i) {
var real = n.re + i; // x += p[i]/(n+i)
var den = real * real + n.im * n.im;
if (den != 0) {
x.re += p[i] * real / den;
x.im += -(p[i] * n.im) / den;
} else {
x.re = p[i] < 0
? -Infinity
: Infinity;
}
}
t = new Complex(n.re + g + 0.5, n.im);
var twoPiSqrt = Math.sqrt(2*Math.PI);
n.re += 0.5;
var result = math.pow(t, n);
if (result.im == 0) { // sqrt(2*PI)*result
result.re *= twoPiSqrt;
} else if (result.re == 0) {
result.im *= twoPiSqrt;
} else {
result.re *= twoPiSqrt;
result.im *= twoPiSqrt;
}
var r = Math.exp(-t.re); // exp(-t)
t.re = r * Math.cos(-t.im);
t.im = r * Math.sin(-t.im);
result = math.multiply(math.multiply(result, t), x);
if (!ltHalf) {
return result;
}
if (prev.im == 0) { // PI * prev
prev.re *= Math.PI;
} else if (prev.re == 0) {
prev.im *= Math.PI;
} else {
prev.re *= Math.PI;
prev.im *= Math.PI;
}
var tmpRe = prev.re; // sin(prev)
prev.re = Math.sin(tmpRe) * math.cosh(-prev.im);
prev.im = Math.cos(tmpRe) * math.sinh( prev.im);
result = math.multiply(prev, result);
var den = result.re*result.re + result.im*result.im; // PI / result
if (den != 0) {
result.re = result.re * Math.PI / den;
result.im = -(Math.PI * result.im) / den;
} else {
result.re = Infinity;
result.im = 0;
}
return result;
}
if (n instanceof BigNumber) {
if (n.isInteger()) {
if (n.isNegative() || n.isZero()) {
return new BigNumber(Infinity);
}
return math.factorial(n.minus(1));
}
if (!n.isFinite()) {
return new BigNumber(n.isNegative()
? NaN
: n
);
}
// TODO: support sin for BigNumber
var one = new BigNumber(1);
n = n.minus(one);
x = bigP[0];
var a = new BigNumber(one);
for (var i = 1; i < g + 2; ++i) {
x = x.plus(bigP[i].div(n.plus(a)));
a = a.plus(one);
}
t = n.plus(g + 0.5);
return twoBigPiSqrt.times(
t.pow(n.plus(0.5)).times(t.neg().exp().times(x)));
}
if (isBoolean(n) || n === null) {
return n
? 1
: Infinity;
}
if (isCollection(n)) {
return collection.deepMap(n, gamma);
}
throw new math.error.UnsupportedTypeError('gamma', math['typeof'](n));
};
var twoBigPiSqrt = util.bignumber.pi(config.precision).times(2).sqrt();
var p = [
0.99999999999980993,
676.5203681218851,
-1259.1392167224028,
771.32342877765313,
-176.61502916214059,
12.507343278686905,
-0.13857109526572012,
9.9843695780195716e-6,
1.5056327351493116e-7
];
var bigP = [
new BigNumber('0.99999999999980993'),
new BigNumber('676.5203681218851'),
new BigNumber('-1259.1392167224028'),
new BigNumber('771.32342877765313'),
new BigNumber('-176.61502916214059'),
new BigNumber('12.507343278686905'),
new BigNumber('-0.13857109526572012'),
new BigNumber('9.9843695780195716e-6'),
new BigNumber('1.5056327351493116e-7')
];
};