mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
156 lines
3.7 KiB
JavaScript
156 lines
3.7 KiB
JavaScript
'use strict';
|
|
|
|
module.exports = function (math) {
|
|
var util = require('../../util/index'),
|
|
|
|
Matrix = require('../../type/Matrix'),
|
|
|
|
object = util.object,
|
|
string = util.string;
|
|
|
|
/**
|
|
* Calculate the determinant of a matrix.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.det(x)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.det([[1, 2], [3, 4]]); // returns -2
|
|
*
|
|
* var A = [
|
|
* [-2, 2, 3],
|
|
* [-1, 1, 3],
|
|
* [2, 0, -1]
|
|
* ]
|
|
* math.det(A); // returns 6
|
|
*
|
|
* See also:
|
|
*
|
|
* inv
|
|
*
|
|
* @param {Array | Matrix} x A matrix
|
|
* @return {Number} The determinant of `x`
|
|
*/
|
|
math.det = function det (x) {
|
|
if (arguments.length != 1) {
|
|
throw new math.error.ArgumentsError('det', arguments.length, 1);
|
|
}
|
|
|
|
var size;
|
|
if (x instanceof Matrix) {
|
|
size = x.size();
|
|
}
|
|
else if (x instanceof Array) {
|
|
x = new Matrix(x);
|
|
size = x.size();
|
|
}
|
|
else {
|
|
// a scalar
|
|
size = [];
|
|
}
|
|
|
|
switch (size.length) {
|
|
case 0:
|
|
// scalar
|
|
return object.clone(x);
|
|
|
|
case 1:
|
|
// vector
|
|
if (size[0] == 1) {
|
|
return object.clone(x.valueOf()[0]);
|
|
}
|
|
else {
|
|
throw new RangeError('Matrix must be square ' +
|
|
'(size: ' + string.format(size) + ')');
|
|
}
|
|
|
|
case 2:
|
|
// two dimensional array
|
|
var rows = size[0];
|
|
var cols = size[1];
|
|
if (rows == cols) {
|
|
return _det(x.clone().valueOf(), rows, cols);
|
|
}
|
|
else {
|
|
throw new RangeError('Matrix must be square ' +
|
|
'(size: ' + string.format(size) + ')');
|
|
}
|
|
|
|
default:
|
|
// multi dimensional array
|
|
throw new RangeError('Matrix must be two dimensional ' +
|
|
'(size: ' + string.format(size) + ')');
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Calculate the determinant of a matrix
|
|
* @param {Array[]} matrix A square, two dimensional matrix
|
|
* @param {Number} rows Number of rows of the matrix (zero-based)
|
|
* @param {Number} cols Number of columns of the matrix (zero-based)
|
|
* @returns {Number} det
|
|
* @private
|
|
*/
|
|
function _det (matrix, rows, cols) {
|
|
if (rows == 1) {
|
|
// this is a 1 x 1 matrix
|
|
return object.clone(matrix[0][0]);
|
|
}
|
|
else if (rows == 2) {
|
|
// this is a 2 x 2 matrix
|
|
// the determinant of [a11,a12;a21,a22] is det = a11*a22-a21*a12
|
|
return math.subtract(
|
|
math.multiply(matrix[0][0], matrix[1][1]),
|
|
math.multiply(matrix[1][0], matrix[0][1])
|
|
);
|
|
}
|
|
else {
|
|
// this is an n x n matrix
|
|
var compute_mu = function (matrix) {
|
|
var i, j;
|
|
|
|
// Compute the matrix with zero lower triangle, same upper triangle,
|
|
// and diagonals given by the negated sum of the below diagonal
|
|
// elements.
|
|
var mu = new Array(matrix.length);
|
|
var sum = 0;
|
|
for (i = 1; i < matrix.length; i++) {
|
|
sum = math.add(sum, matrix[i][i]);
|
|
}
|
|
|
|
for (i = 0; i < matrix.length; i++) {
|
|
mu[i] = new Array(matrix.length);
|
|
mu[i][i] = math.unaryMinus(sum);
|
|
|
|
for (j = 0; j < i; j++) {
|
|
mu[i][j] = 0; // TODO: make bignumber 0 in case of bignumber computation
|
|
}
|
|
|
|
for (j = i + 1; j < matrix.length; j++) {
|
|
mu[i][j] = matrix[i][j];
|
|
}
|
|
|
|
if (i+1 < matrix.length) {
|
|
sum = math.subtract(sum, matrix[i + 1][i + 1]);
|
|
}
|
|
}
|
|
|
|
return mu;
|
|
};
|
|
|
|
var fa = matrix;
|
|
for (var i = 0; i < rows - 1; i++) {
|
|
fa = math.multiply(compute_mu(fa), matrix);
|
|
}
|
|
|
|
if (rows % 2 == 0) {
|
|
return math.unaryMinus(fa[0][0]);
|
|
} else {
|
|
return fa[0][0];
|
|
}
|
|
}
|
|
}
|
|
};
|