152 lines
4.0 KiB
JavaScript

'use strict'
function factory (type, config, load) {
const divideScalar = load(require('../../arithmetic/divideScalar'))
const sqrt = load(require('../../arithmetic/sqrt'))
const subtract = load(require('../../arithmetic/subtract'))
const multiply = load(require('../../arithmetic/multiply'))
const im = load(require('../../complex/im'))
const re = load(require('../../complex/re'))
const conj = load(require('../../complex/conj'))
const equal = load(require('../../relational/equal'))
const smallerEq = load(require('../../relational/smallerEq'))
const csSymperm = load(require('./csSymperm'))
const csEreach = load(require('./csEreach'))
const SparseMatrix = type.SparseMatrix
/**
* Computes the Cholesky factorization of matrix A. It computes L and P so
* L * L' = P * A * P'
*
* @param {Matrix} m The A Matrix to factorize, only upper triangular part used
* @param {Object} s The symbolic analysis from cs_schol()
*
* @return {Number} The numeric Cholesky factorization of A or null
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
const csChol = function (m, s) {
// validate input
if (!m) { return null }
// m arrays
const size = m._size
// columns
const n = size[1]
// symbolic analysis result
const parent = s.parent
const cp = s.cp
const pinv = s.pinv
// L arrays
const lvalues = []
const lindex = []
const lptr = []
// L
const L = new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: [n, n]
})
// vars
const c = [] // (2 * n)
const x = [] // (n)
// compute C = P * A * P'
const cm = pinv ? csSymperm(m, pinv, 1) : m
// C matrix arrays
const cvalues = cm._values
const cindex = cm._index
const cptr = cm._ptr
// vars
let k, p
// initialize variables
for (k = 0; k < n; k++) { lptr[k] = c[k] = cp[k] }
// compute L(k,:) for L*L' = C
for (k = 0; k < n; k++) {
// nonzero pattern of L(k,:)
let top = csEreach(cm, k, parent, c)
// x (0:k) is now zero
x[k] = 0
// x = full(triu(C(:,k)))
for (p = cptr[k]; p < cptr[k + 1]; p++) {
if (cindex[p] <= k) { x[cindex[p]] = cvalues[p] }
}
// d = C(k,k)
let d = x[k]
// clear x for k+1st iteration
x[k] = 0
// solve L(0:k-1,0:k-1) * x = C(:,k)
for (; top < n; top++) {
// s[top..n-1] is pattern of L(k,:)
const i = s[top]
// L(k,i) = x (i) / L(i,i)
const lki = divideScalar(x[i], lvalues[lptr[i]])
// clear x for k+1st iteration
x[i] = 0
for (p = lptr[i] + 1; p < c[i]; p++) {
// row
const r = lindex[p]
// update x[r]
x[r] = subtract(x[r], multiply(lvalues[p], lki))
}
// d = d - L(k,i)*L(k,i)
d = subtract(d, multiply(lki, conj(lki)))
p = c[i]++
// store L(k,i) in column i
lindex[p] = k
lvalues[p] = conj(lki)
}
// compute L(k,k)
if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
// not pos def
return null
}
p = c[k]++
// store L(k,k) = sqrt(d) in column k
lindex[p] = k
lvalues[p] = sqrt(d)
}
// finalize L
lptr[n] = cp[n]
// P matrix
let P
// check we need to calculate P
if (pinv) {
// P arrays
const pvalues = []
const pindex = []
const pptr = []
// create P matrix
for (p = 0; p < n; p++) {
// initialize ptr (one value per column)
pptr[p] = p
// index (apply permutation vector)
pindex.push(pinv[p])
// value 1
pvalues.push(1)
}
// update ptr
pptr[n] = n
// P
P = new SparseMatrix({
values: pvalues,
index: pindex,
ptr: pptr,
size: [n, n]
})
}
// return L & P
return {
L: L,
P: P
}
}
return csChol
}
exports.name = 'csChol'
exports.path = 'algebra.sparse'
exports.factory = factory