Nick Ewing 859cfa208a
Replace recursive calls in typed-functions with this-style calls (#1903)
* Fix #1902: typo in an example in the documentation

* Replace recursive calls in typed-functions with `this`-style calls

* Replace more recursive calls in typed-functions with `this`-style calls

* Refactor compareNatural to use this-style recursion

Co-authored-by: josdejong <wjosdejong@gmail.com>
2020-07-13 17:37:30 +02:00

208 lines
5.8 KiB
JavaScript

import { factory } from '../../utils/factory'
import { createAlgorithm01 } from '../../type/matrix/utils/algorithm01'
import { createAlgorithm02 } from '../../type/matrix/utils/algorithm02'
import { createAlgorithm06 } from '../../type/matrix/utils/algorithm06'
import { createAlgorithm11 } from '../../type/matrix/utils/algorithm11'
import { createAlgorithm13 } from '../../type/matrix/utils/algorithm13'
import { createAlgorithm14 } from '../../type/matrix/utils/algorithm14'
import { nthRootNumber } from '../../plain/number'
const name = 'nthRoot'
const dependencies = [
'typed',
'matrix',
'equalScalar',
'BigNumber'
]
export const createNthRoot = /* #__PURE__ */ factory(name, dependencies, ({ typed, matrix, equalScalar, BigNumber }) => {
const algorithm01 = createAlgorithm01({ typed })
const algorithm02 = createAlgorithm02({ typed, equalScalar })
const algorithm06 = createAlgorithm06({ typed, equalScalar })
const algorithm11 = createAlgorithm11({ typed, equalScalar })
const algorithm13 = createAlgorithm13({ typed })
const algorithm14 = createAlgorithm14({ typed })
/**
* Calculate the nth root of a value.
* The principal nth root of a positive real number A, is the positive real
* solution of the equation
*
* x^root = A
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.nthRoot(a)
* math.nthRoot(a, root)
*
* Examples:
*
* math.nthRoot(9, 2) // returns 3, as 3^2 == 9
* math.sqrt(9) // returns 3, as 3^2 == 9
* math.nthRoot(64, 3) // returns 4, as 4^3 == 64
*
* See also:
*
* sqrt, pow
*
* @param {number | BigNumber | Array | Matrix | Complex} a
* Value for which to calculate the nth root
* @param {number | BigNumber} [root=2] The root.
* @return {number | Complex | Array | Matrix} Returns the nth root of `a`
*/
const complexErr = ('' +
'Complex number not supported in function nthRoot. ' +
'Use nthRoots instead.'
)
return typed(name, {
number: function (x) {
return nthRootNumber(x, 2)
},
'number, number': nthRootNumber,
BigNumber: function (x) {
return _bigNthRoot(x, new BigNumber(2))
},
Complex: function (x) {
throw new Error(complexErr)
},
'Complex, number': function (x, y) {
throw new Error(complexErr)
},
'BigNumber, BigNumber': _bigNthRoot,
'Array | Matrix': function (x) {
return this(x, 2)
},
'SparseMatrix, SparseMatrix': function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse + sparse
return algorithm06(x, y, this)
} else {
// throw exception
throw new Error('Root must be non-zero')
}
},
'SparseMatrix, DenseMatrix': function (x, y) {
return algorithm02(y, x, this, true)
},
'DenseMatrix, SparseMatrix': function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// dense + sparse
return algorithm01(x, y, this, false)
} else {
// throw exception
throw new Error('Root must be non-zero')
}
},
'DenseMatrix, DenseMatrix': function (x, y) {
return algorithm13(x, y, this)
},
'Array, Array': function (x, y) {
// use matrix implementation
return this(matrix(x), matrix(y)).valueOf()
},
'Array, Matrix': function (x, y) {
// use matrix implementation
return this(matrix(x), y)
},
'Matrix, Array': function (x, y) {
// use matrix implementation
return this(x, matrix(y))
},
'SparseMatrix, number | BigNumber': function (x, y) {
return algorithm11(x, y, this, false)
},
'DenseMatrix, number | BigNumber': function (x, y) {
return algorithm14(x, y, this, false)
},
'number | BigNumber, SparseMatrix': function (x, y) {
// density must be one (no zeros in matrix)
if (y.density() === 1) {
// sparse - scalar
return algorithm11(y, x, this, true)
} else {
// throw exception
throw new Error('Root must be non-zero')
}
},
'number | BigNumber, DenseMatrix': function (x, y) {
return algorithm14(y, x, this, true)
},
'Array, number | BigNumber': function (x, y) {
// use matrix implementation
return this(matrix(x), y).valueOf()
},
'number | BigNumber, Array': function (x, y) {
// use matrix implementation
return this(x, matrix(y)).valueOf()
}
})
/**
* Calculate the nth root of a for BigNumbers, solve x^root == a
* https://rosettacode.org/wiki/Nth_root#JavaScript
* @param {BigNumber} a
* @param {BigNumber} root
* @private
*/
function _bigNthRoot (a, root) {
const precision = BigNumber.precision
const Big = BigNumber.clone({ precision: precision + 2 })
const zero = new BigNumber(0)
const one = new Big(1)
const inv = root.isNegative()
if (inv) {
root = root.neg()
}
if (root.isZero()) {
throw new Error('Root must be non-zero')
}
if (a.isNegative() && !root.abs().mod(2).equals(1)) {
throw new Error('Root must be odd when a is negative.')
}
// edge cases zero and infinity
if (a.isZero()) {
return inv ? new Big(Infinity) : 0
}
if (!a.isFinite()) {
return inv ? zero : a
}
let x = a.abs().pow(one.div(root))
// If a < 0, we require that root is an odd integer,
// so (-1) ^ (1/root) = -1
x = a.isNeg() ? x.neg() : x
return new BigNumber((inv ? one.div(x) : x).toPrecision(precision))
}
})
export const createNthRootNumber = /* #__PURE__ */ factory(name, ['typed'], ({ typed }) => {
return typed(name, {
number: nthRootNumber,
'number, number': nthRootNumber
})
})