2018-10-30 20:21:16 +01:00

193 lines
5.4 KiB
JavaScript

'use strict'
const isInteger = require('../../utils/number').isInteger
const size = require('../../utils/array').size
function factory (type, config, load, typed) {
const latex = require('../../utils/latex')
const identity = load(require('../matrix/identity'))
const multiply = load(require('./multiply'))
const matrix = load(require('../../type/matrix/function/matrix'))
const fraction = load(require('../../type/fraction/function/fraction'))
const number = load(require('../../type/number'))
/**
* Calculates the power of x to y, `x ^ y`.
* Matrix exponentiation is supported for square matrices `x`, and positive
* integer exponents `y`.
*
* For cubic roots of negative numbers, the function returns the principal
* root by default. In order to let the function return the real root,
* math.js can be configured with `math.config({predictable: true})`.
* To retrieve all cubic roots of a value, use `math.cbrt(x, true)`.
*
* Syntax:
*
* math.pow(x, y)
*
* Examples:
*
* math.pow(2, 3) // returns number 8
*
* const a = math.complex(2, 3)
* math.pow(a, 2) // returns Complex -5 + 12i
*
* const b = [[1, 2], [4, 3]]
* math.pow(b, 2) // returns Array [[9, 8], [16, 17]]
*
* See also:
*
* multiply, sqrt, cbrt, nthRoot
*
* @param {number | BigNumber | Complex | Unit | Array | Matrix} x The base
* @param {number | BigNumber | Complex} y The exponent
* @return {number | BigNumber | Complex | Array | Matrix} The value of `x` to the power `y`
*/
const pow = typed('pow', {
'number, number': _pow,
'Complex, Complex': function (x, y) {
return x.pow(y)
},
'BigNumber, BigNumber': function (x, y) {
if (y.isInteger() || x >= 0 || config.predictable) {
return x.pow(y)
} else {
return new type.Complex(x.toNumber(), 0).pow(y.toNumber(), 0)
}
},
'Fraction, Fraction': function (x, y) {
if (y.d !== 1) {
if (config.predictable) {
throw new Error('Function pow does not support non-integer exponents for fractions.')
} else {
return _pow(x.valueOf(), y.valueOf())
}
} else {
return x.pow(y)
}
},
'Array, number': _powArray,
'Array, BigNumber': function (x, y) {
return _powArray(x, y.toNumber())
},
'Matrix, number': _powMatrix,
'Matrix, BigNumber': function (x, y) {
return _powMatrix(x, y.toNumber())
},
'Unit, number | BigNumber': function (x, y) {
return x.pow(y)
}
})
/**
* Calculates the power of x to y, x^y, for two numbers.
* @param {number} x
* @param {number} y
* @return {number | Complex} res
* @private
*/
function _pow (x, y) {
// Alternatively could define a 'realmode' config option or something, but
// 'predictable' will work for now
if (config.predictable && !isInteger(y) && x < 0) {
// Check to see if y can be represented as a fraction
try {
const yFrac = fraction(y)
const yNum = number(yFrac)
if (y === yNum || Math.abs((y - yNum) / y) < 1e-14) {
if (yFrac.d % 2 === 1) {
return (yFrac.n % 2 === 0 ? 1 : -1) * Math.pow(-x, y)
}
}
} catch (ex) {
// fraction() throws an error if y is Infinity, etc.
}
// Unable to express y as a fraction, so continue on
}
// x^Infinity === 0 if -1 < x < 1
// A real number 0 is returned instead of complex(0)
if ((x * x < 1 && y === Infinity) ||
(x * x > 1 && y === -Infinity)) {
return 0
}
// **for predictable mode** x^Infinity === NaN if x < -1
// N.B. this behavour is different from `Math.pow` which gives
// (-2)^Infinity === Infinity
if (config.predictable &&
((x < -1 && y === Infinity) ||
(x > -1 && x < 0 && y === -Infinity))) {
return NaN
}
if (isInteger(y) || x >= 0 || config.predictable) {
return Math.pow(x, y)
} else {
return new type.Complex(x, 0).pow(y, 0)
}
}
/**
* Calculate the power of a 2d array
* @param {Array} x must be a 2 dimensional, square matrix
* @param {number} y a positive, integer value
* @returns {Array}
* @private
*/
function _powArray (x, y) {
if (!isInteger(y) || y < 0) {
throw new TypeError('For A^b, b must be a positive integer (value is ' + y + ')')
}
// verify that A is a 2 dimensional square matrix
const s = size(x)
if (s.length !== 2) {
throw new Error('For A^b, A must be 2 dimensional (A has ' + s.length + ' dimensions)')
}
if (s[0] !== s[1]) {
throw new Error('For A^b, A must be square (size is ' + s[0] + 'x' + s[1] + ')')
}
let res = identity(s[0]).valueOf()
let px = x
while (y >= 1) {
if ((y & 1) === 1) {
res = multiply(px, res)
}
y >>= 1
px = multiply(px, px)
}
return res
}
/**
* Calculate the power of a 2d matrix
* @param {Matrix} x must be a 2 dimensional, square matrix
* @param {number} y a positive, integer value
* @returns {Matrix}
* @private
*/
function _powMatrix (x, y) {
return matrix(_powArray(x.valueOf(), y))
}
pow.toTex = {
2: `\\left(\${args[0]}\\right)${latex.operators['pow']}{\${args[1]}}`
}
return pow
}
exports.name = 'pow'
exports.factory = factory