mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
696 lines
18 KiB
JavaScript
696 lines
18 KiB
JavaScript
'use strict';
|
|
|
|
var util = require('../../util/index');
|
|
|
|
var array = util.array;
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var matrix = load(require('../construction/matrix'));
|
|
var add = load(require('./add'));
|
|
var equal = load(require('../relational/equal'));
|
|
var sparseScatter = load(require('./sparseScatter'));
|
|
|
|
var collection = load(require('../../type/collection'));
|
|
|
|
var DenseMatrix = type.DenseMatrix;
|
|
var SparseMatrix = type.SparseMatrix;
|
|
var Spa = type.Spa;
|
|
|
|
/**
|
|
* Multiply two values, `x * y`. The result is squeezed.
|
|
* For matrices, the matrix product is calculated.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.multiply(x, y)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.multiply(4, 5.2); // returns Number 20.8
|
|
*
|
|
* var a = math.complex(2, 3);
|
|
* var b = math.complex(4, 1);
|
|
* math.multiply(a, b); // returns Complex 5 + 14i
|
|
*
|
|
* var c = [[1, 2], [4, 3]];
|
|
* var d = [[1, 2, 3], [3, -4, 7]];
|
|
* math.multiply(c, d); // returns Array [[7, -6, 17], [13, -4, 33]]
|
|
*
|
|
* var e = math.unit('2.1 km');
|
|
* math.multiply(3, e); // returns Unit 6.3 km
|
|
*
|
|
* See also:
|
|
*
|
|
* divide
|
|
*
|
|
* @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} x First value to multiply
|
|
* @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} y Second value to multiply
|
|
* @return {Number | BigNumber | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
|
|
*/
|
|
var multiply = typed('multiply', {
|
|
|
|
'number, number': function (x, y) {
|
|
return x * y;
|
|
},
|
|
|
|
'BigNumber, BigNumber': function (x, y) {
|
|
return x.times(y);
|
|
},
|
|
|
|
'Complex, Complex': function (x, y) {
|
|
return new type.Complex(
|
|
x.re * y.re - x.im * y.im,
|
|
x.re * y.im + x.im * y.re
|
|
);
|
|
},
|
|
|
|
'number, Unit': function (x, y) {
|
|
var res = y.clone();
|
|
res.value = (res.value === null) ? res._normalize(x) : (res.value * x);
|
|
return res;
|
|
},
|
|
|
|
'Unit, number': function (x, y) {
|
|
var res = x.clone();
|
|
res.value = (res.value === null) ? res._normalize(y) : (res.value * y);
|
|
return res;
|
|
},
|
|
|
|
'Array, Array': function (x, y) {
|
|
// check dimensions
|
|
_validateMatrixDimensions(array.size(x), array.size(y));
|
|
|
|
// use dense matrix implementation
|
|
var m = multiply(matrix(x), matrix(y));
|
|
// return array or scalar
|
|
return m instanceof type.Matrix ? m.valueOf() : m;
|
|
},
|
|
|
|
'Matrix, Matrix': function (x, y) {
|
|
// dimensions
|
|
var xsize = x.size();
|
|
var ysize = y.size();
|
|
|
|
// check dimensions
|
|
_validateMatrixDimensions(xsize, ysize);
|
|
|
|
// process dimensions
|
|
if (xsize.length === 1) {
|
|
// process y dimensions
|
|
if (ysize.length === 1) {
|
|
// Vector * Vector
|
|
return _multiplyVectorVector(x, y, xsize[0]);
|
|
}
|
|
// Vector * Matrix
|
|
return _multiplyVectorMatrix(x, y);
|
|
}
|
|
// process y dimensions
|
|
if (ysize.length === 1) {
|
|
// Matrix * Vector
|
|
return _multiplyMatrixVector(x, y);
|
|
}
|
|
// Matrix * Matrix
|
|
return _multiplyMatrixMatrix(x, y);
|
|
},
|
|
|
|
'Matrix, Array': function (x, y) {
|
|
// use Matrix * Matrix implementation
|
|
return multiply(x, matrix(y));
|
|
},
|
|
|
|
'Array, Matrix': function (x, y) {
|
|
// use Matrix * Matrix implementation
|
|
return multiply(matrix(x, y.storage()), y);
|
|
},
|
|
|
|
'Array, any': function (x, y) {
|
|
return collection.deepMap2(x, y, multiply);
|
|
},
|
|
|
|
'Matrix, any': function (x, y) {
|
|
// use matrix map, skip zeros since 0 * X = 0
|
|
return x.map(function (v) {
|
|
return multiply(v, y);
|
|
}, true);
|
|
},
|
|
|
|
'any, Array | Matrix': function (x, y) {
|
|
// use matrix map, skip zeros since 0 * X = 0
|
|
return y.map(function (v) {
|
|
return multiply(v, x);
|
|
}, true);
|
|
}
|
|
});
|
|
|
|
var _validateMatrixDimensions = function (size1, size2) {
|
|
// check left operand dimensions
|
|
switch (size1.length) {
|
|
case 1:
|
|
// check size2
|
|
switch (size2.length) {
|
|
case 1:
|
|
// Vector x Vector
|
|
if (size1[0] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length');
|
|
}
|
|
break;
|
|
case 2:
|
|
// Vector x Matrix
|
|
if (size1[0] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')');
|
|
}
|
|
break;
|
|
default:
|
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
|
|
}
|
|
break;
|
|
case 2:
|
|
// check size2
|
|
switch (size2.length) {
|
|
case 1:
|
|
// Matrix x Vector
|
|
if (size1[1] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')');
|
|
}
|
|
break;
|
|
case 2:
|
|
// Matrix x Matrix
|
|
if (size1[1] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')');
|
|
}
|
|
break;
|
|
default:
|
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
|
|
}
|
|
break;
|
|
default:
|
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)');
|
|
}
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Dense Vector (N)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {Number} Scalar value
|
|
*/
|
|
var _multiplyVectorVector = function (a, b, n) {
|
|
// check empty vector
|
|
if (n === 0)
|
|
throw new Error('Cannot multiply two empty vectors');
|
|
|
|
// a dense
|
|
var adata = a._data;
|
|
// b dense
|
|
var bdata = b._data;
|
|
|
|
// result
|
|
var c = 0;
|
|
// loop data
|
|
for (var i = 0; i < n; i++) {
|
|
// multiply and accumulate
|
|
c = add(c, multiply(adata[i], bdata[i]));
|
|
}
|
|
return c;
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Dense Vector (M)
|
|
* @param {Matrix} b Matrix (MxN)
|
|
*
|
|
* @return {Matrix} Dense Vector (N)
|
|
*/
|
|
var _multiplyVectorMatrix = function (a, b) {
|
|
// process storage
|
|
switch (b.storage()) {
|
|
case 'dense':
|
|
return _multiplyVectorDenseMatrix(a, b);
|
|
}
|
|
throw new Error('Not implemented');
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Dense Vector (M)
|
|
* @param {Matrix} b Dense Matrix (MxN)
|
|
*
|
|
* @return {Matrix} Dense Vector (N)
|
|
*/
|
|
var _multiplyVectorDenseMatrix = function (a, b) {
|
|
// a dense
|
|
var adata = a._data;
|
|
var asize = a._size;
|
|
// b dense
|
|
var bdata = b._data;
|
|
var bsize = b._size;
|
|
// rows & columns
|
|
var alength = asize[0];
|
|
var bcolumns = bsize[1];
|
|
|
|
// result
|
|
var c = new Array(bcolumns);
|
|
|
|
// loop matrix columns
|
|
for (var j = 0; j < bcolumns; j++) {
|
|
// sum
|
|
var sum = 0;
|
|
// loop vector
|
|
for (var i = 0; i < alength; i++) {
|
|
// multiply & accumulate
|
|
sum = add(sum, multiply(adata[i], bdata[i][j]));
|
|
}
|
|
c[j] = sum;
|
|
}
|
|
|
|
// check we need to squeeze the result into a scalar
|
|
if (bcolumns === 1)
|
|
return c[0];
|
|
|
|
// return matrix
|
|
return new DenseMatrix({
|
|
data: c,
|
|
size: [bcolumns]
|
|
});
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Matrix (MxN)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {Matrix} Dense Vector (M)
|
|
*/
|
|
var _multiplyMatrixVector = function (a, b) {
|
|
// process storage
|
|
switch (a.storage()) {
|
|
case 'dense':
|
|
return _multiplyDenseMatrixVector(a, b);
|
|
case 'sparse':
|
|
return _multiplySparseMatrixVector(a, b);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Matrix (MxN)
|
|
* @param {Matrix} b Matrix (NxC)
|
|
*
|
|
* @return {Matrix} Matrix (MxC)
|
|
*/
|
|
var _multiplyMatrixMatrix = function (a, b) {
|
|
// process storage
|
|
switch (a.storage()) {
|
|
case 'dense':
|
|
// process storage
|
|
switch (b.storage()) {
|
|
case 'dense':
|
|
return _multiplyDenseMatrixDenseMatrix(a, b);
|
|
case 'sparse':
|
|
return _multiplyDenseMatrixSparseMatrix(a, b);
|
|
}
|
|
break;
|
|
case 'sparse':
|
|
// process storage
|
|
switch (b.storage()) {
|
|
case 'dense':
|
|
return _multiplySparseMatrixDenseMatrix(a, b);
|
|
case 'sparse':
|
|
return _multiplySparseMatrixSparseMatrix(a, b);
|
|
}
|
|
break;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {Matrix} Dense Vector (M)
|
|
*/
|
|
var _multiplyDenseMatrixVector = function (a, b) {
|
|
// a dense
|
|
var adata = a._data;
|
|
var asize = a._size;
|
|
// b dense
|
|
var bdata = b._data;
|
|
// rows & columns
|
|
var arows = asize[0];
|
|
var acolumns = asize[1];
|
|
|
|
// result
|
|
var c = new Array(arows);
|
|
|
|
// loop matrix a rows
|
|
for (var i = 0; i < arows; i++) {
|
|
// current row
|
|
var row = adata[i];
|
|
// sum
|
|
var sum = 0;
|
|
// loop matrix a columns
|
|
for (var j = 0; j < acolumns; j++) {
|
|
// multiply & accumulate
|
|
sum = add(sum, multiply(row[j], bdata[j]));
|
|
}
|
|
c[i] = sum;
|
|
}
|
|
// check we need to squeeze the result into a scalar
|
|
if (arows === 1)
|
|
return c[0];
|
|
|
|
// return matrix
|
|
return new DenseMatrix({
|
|
data: c,
|
|
size: [arows]
|
|
});
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b DenseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} DenseMatrix (MxC)
|
|
*/
|
|
var _multiplyDenseMatrixDenseMatrix = function (a, b) {
|
|
// a dense
|
|
var adata = a._data;
|
|
var asize = a._size;
|
|
// b dense
|
|
var bdata = b._data;
|
|
var bsize = b._size;
|
|
// rows & columns
|
|
var arows = asize[0];
|
|
var acolumns = asize[1];
|
|
var bcolumns = bsize[1];
|
|
|
|
// result
|
|
var c = new Array(arows);
|
|
|
|
// loop matrix a rows
|
|
for (var i = 0; i < arows; i++) {
|
|
// current row
|
|
var row = adata[i];
|
|
// initialize row array
|
|
c[i] = new Array(bcolumns);
|
|
// loop matrix b columns
|
|
for (var j = 0; j < bcolumns; j++) {
|
|
// sum
|
|
var sum = 0;
|
|
// loop matrix a columns
|
|
for (var x = 0; x < acolumns; x++) {
|
|
// multiply & accumulate
|
|
sum = add(sum, multiply(row[x], bdata[x][j]));
|
|
}
|
|
c[i][j] = sum;
|
|
}
|
|
}
|
|
// check we need to squeeze the result into a scalar
|
|
if (arows === 1 && bcolumns === 1)
|
|
return c[0][0];
|
|
|
|
// return matrix
|
|
return new DenseMatrix({
|
|
data: c,
|
|
size: [arows, bcolumns]
|
|
});
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b SparseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} DenseMatrix (MxC)
|
|
*/
|
|
var _multiplyDenseMatrixSparseMatrix = function (a, b) {
|
|
// a dense
|
|
var adata = a._data;
|
|
var asize = a._size;
|
|
// b sparse
|
|
var bvalues = b._values;
|
|
var bindex = b._index;
|
|
var bptr = b._ptr;
|
|
var bsize = b._size;
|
|
// rows & columns
|
|
var arows = asize[0];
|
|
var bcolumns = bsize[1];
|
|
|
|
// result
|
|
var c = new Array(arows);
|
|
|
|
// loop a rows
|
|
for (var i = 0; i < arows; i++) {
|
|
// initialize row
|
|
c[i] = new Array(bcolumns);
|
|
// current row
|
|
var row = adata[i];
|
|
// loop b columns
|
|
for (var j = 0; j < bcolumns; j++) {
|
|
// sum
|
|
var sum = 0;
|
|
// values & index in column j
|
|
for (var k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) {
|
|
// row
|
|
var x = bindex[k];
|
|
// multiply & accumulate
|
|
sum = add(sum, multiply(row[x], bvalues[k]));
|
|
}
|
|
c[i][j] = sum;
|
|
}
|
|
}
|
|
|
|
// check we need to squeeze the result into a scalar
|
|
if (arows === 1 && bcolumns === 1)
|
|
return c[0][0];
|
|
|
|
// return matrix
|
|
return new DenseMatrix({
|
|
data: c,
|
|
size: [arows, bcolumns]
|
|
});
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {Matrix} SparseMatrix (M, 1)
|
|
*/
|
|
var _multiplySparseMatrixVector = function (a, b) {
|
|
// a sparse
|
|
var avalues = a._values;
|
|
var aindex = a._index;
|
|
var aptr = a._ptr;
|
|
// b dense
|
|
var bdata = b._data;
|
|
// rows & columns
|
|
var arows = a._size[0];
|
|
var brows = b._size[0];
|
|
// result
|
|
var cvalues = [];
|
|
var cindex = [];
|
|
var cptr = [];
|
|
|
|
// create sparse accumulator
|
|
var spa = new Spa(arows);
|
|
|
|
// update ptr
|
|
cptr.push(0);
|
|
// rows in b
|
|
for (var ib = 0; ib < brows; ib++) {
|
|
// b[ib]
|
|
var vbi = bdata[ib];
|
|
// check b[ib] != 0, avoid loops
|
|
if (!equal(vbi, 0)) {
|
|
// A values & index in ib column
|
|
for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
|
// a row
|
|
var ia = aindex[ka];
|
|
// accumulate
|
|
spa.accumulate(ia, multiply(vbi, avalues[ka]));
|
|
}
|
|
}
|
|
}
|
|
// process spa
|
|
spa.forEach(0, arows - 1, function (x, v) {
|
|
cindex.push(x);
|
|
cvalues.push(v);
|
|
});
|
|
// update ptr
|
|
cptr.push(cvalues.length);
|
|
|
|
// check we need to squeeze the result into a scalar
|
|
if (arows === 1)
|
|
return cvalues.length === 1 ? cvalues[0] : 0;
|
|
|
|
// return sparse matrix
|
|
return new SparseMatrix({
|
|
values : cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [arows, 1]
|
|
});
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b DenseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxC)
|
|
*/
|
|
var _multiplySparseMatrixDenseMatrix = function (a, b) {
|
|
// a sparse
|
|
var avalues = a._values;
|
|
var aindex = a._index;
|
|
var aptr = a._ptr;
|
|
// b dense
|
|
var bdata = b._data;
|
|
// rows & columns
|
|
var arows = a._size[0];
|
|
var brows = b._size[0];
|
|
var bcolumns = b._size[1];
|
|
// result
|
|
var cvalues = [];
|
|
var cindex = [];
|
|
var cptr = [];
|
|
|
|
// process column
|
|
var processColumn = function (j, v) {
|
|
cindex.push(j);
|
|
cvalues.push(v);
|
|
};
|
|
|
|
// loop b columns
|
|
for (var jb = 0; jb < bcolumns; jb++) {
|
|
// update ptr
|
|
cptr.push(cvalues.length);
|
|
// create sparse accumulator
|
|
var spa = new Spa(arows);
|
|
// rows in jb
|
|
for (var ib = 0; ib < brows; ib++) {
|
|
// b[ib, jb]
|
|
var vbij = bdata[ib][jb];
|
|
// check b[ib, jb] != 0, avoid loops
|
|
if (!equal(vbij, 0)) {
|
|
// A values & index in ib column
|
|
for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
|
// a row
|
|
var ia = aindex[ka];
|
|
// accumulate
|
|
spa.accumulate(ia, multiply(vbij, avalues[ka]));
|
|
}
|
|
}
|
|
}
|
|
// process sparse accumulator
|
|
spa.forEach(0, arows - 1, processColumn);
|
|
}
|
|
// update ptr
|
|
cptr.push(cvalues.length);
|
|
|
|
// check we need to squeeze the result into a scalar
|
|
if (arows === 1 && bcolumns === 1)
|
|
return cvalues.length === 1 ? cvalues[0] : 0;
|
|
|
|
// return sparse matrix
|
|
return new SparseMatrix({
|
|
values : cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [arows, bcolumns]
|
|
});
|
|
};
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b SparseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxC)
|
|
*/
|
|
var _multiplySparseMatrixSparseMatrix = function (a, b) {
|
|
// a sparse
|
|
var avalues = a._values;
|
|
var aindex = a._index;
|
|
var aptr = a._ptr;
|
|
// b sparse
|
|
var bvalues = b._values;
|
|
var bindex = b._index;
|
|
var bptr = b._ptr;
|
|
// rows & columns
|
|
var arows = a._size[0];
|
|
var bcolumns = b._size[1];
|
|
// result
|
|
var cvalues = [];
|
|
var cindex = [];
|
|
var cptr = [];
|
|
|
|
// process column in C
|
|
var processColumn = function (i, v) {
|
|
cindex.push(i);
|
|
cvalues.push(v);
|
|
};
|
|
|
|
// loop b columns
|
|
for (var jb = 0; jb < bcolumns; jb++) {
|
|
// update ptr
|
|
cptr.push(cvalues.length);
|
|
// create sparse accumulator
|
|
var spa = new Spa(arows);
|
|
// B values & index in j
|
|
for (var kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) {
|
|
// b row
|
|
var ib = bindex[kb];
|
|
// A values & index in ib column
|
|
for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
|
// a row
|
|
var ia = aindex[ka];
|
|
// accumulate
|
|
spa.accumulate(ia, multiply(bvalues[kb], avalues[ka]));
|
|
}
|
|
}
|
|
// process sparse accumulator
|
|
spa.forEach(0, arows - 1, processColumn);
|
|
}
|
|
// update ptr
|
|
cptr.push(cvalues.length);
|
|
|
|
// check we need to squeeze the result into a scalar
|
|
if (arows === 1 && bcolumns === 1)
|
|
return cvalues.length === 1 ? cvalues[0] : 0;
|
|
|
|
// return sparse matrix
|
|
return new SparseMatrix({
|
|
values : cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [arows, bcolumns]
|
|
});
|
|
};
|
|
|
|
return multiply;
|
|
}
|
|
|
|
exports.name = 'multiply';
|
|
exports.factory = factory;
|