88 lines
2.1 KiB
JavaScript

'use strict';
var deepMap = require('../../utils/collection/deepMap');
var atanhAcoth = require('../../utils/bignumber/atanhAcoth');
function factory (type, config, load, typed) {
/**
* Calculate the hyperbolic arctangent of a value,
* defined as `atanh(x) = ln((1 + x)/(1 - x)) / 2`.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.atanh(x)
*
* Examples:
*
* math.atanh(0.5); // returns 0.5493061443340549
*
* See also:
*
* acosh, asinh
*
* @param {number | Complex | Array | Matrix} x Function input
* @return {number | Complex | Array | Matrix} Hyperbolic arctangent of x
*/
var atanh = typed('atanh', {
'number': function (x) {
if ((x <= 1 && x >= -1) || config.predictable) {
return Math.log((1 + x)/(1 - x)) / 2;
}
return _complexAtanh(new type.Complex(x, 0));
},
'Complex': _complexAtanh,
'BigNumber': function (x) {
return atanhAcoth(x, type.BigNumber, false);
},
'Array | Matrix': function (x) {
// deep map collection, skip zeros since atanh(0) = 0
return deepMap(x, atanh, true);
}
});
/**
* Calculate the hyperbolic arctangent of a complex number
* @param {Complex} x
* @returns {Complex}
* @private
*/
function _complexAtanh (x) {
// x.im should equal -pi / 2 in this case
var noIM = x.re > 1 && x.im == 0;
var oneMinus = 1 - x.re;
var onePlus = 1 + x.re;
var den = oneMinus*oneMinus + x.im*x.im;
x = (den != 0)
? new type.Complex(
(onePlus*oneMinus - x.im*x.im) / den,
(x.im*oneMinus + onePlus*x.im) / den
)
: new type.Complex(
(x.re != -1) ? (x.re / 0) : 0,
(x.im != 0) ? (x.im / 0) : 0
);
var temp = x.re;
x.re = Math.log(Math.sqrt(x.re*x.re + x.im*x.im)) / 2;
x.im = Math.atan2(x.im, temp) / 2;
if (noIM) {
x.im = -x.im;
}
return x;
}
atanh.toTex = '\\tanh^{-1}\\left(${args[0]}\\right)';
return atanh;
}
exports.name = 'atanh';
exports.factory = factory;