mathjs/lib/function/probability/distribution.js
2015-07-18 13:22:38 +02:00

213 lines
6.4 KiB
JavaScript

'use strict';
var ArgumentsError = require('../../error/ArgumentsError');
var isCollection = require('../../utils/collection/isCollection');
// TODO: rethink math.distribution
// TODO: rework to a typed function
function factory (type, config, load, typed) {
var matrix = load(require('../../type/matrix/function/matrix'));
var array = require('../../utils/array');
/**
* Create a distribution object with a set of random functions for given
* random distribution.
*
* Syntax:
*
* math.distribution(name)
*
* Examples:
*
* var normalDist = math.distribution('normal'); // create a normal distribution
* normalDist.random(0, 10); // get a random value between 0 and 10
*
* See also:
*
* random, randomInt, pickRandom
*
* @param {string} name Name of a distribution. Choose from 'uniform', 'normal'.
* @return {Object} Returns a distribution object containing functions:
* `random([size] [, min] [, max])`,
* `randomInt([min] [, max])`,
* `pickRandom(array)`
*/
function distribution(name) {
if (!distributions.hasOwnProperty(name))
throw new Error('Unknown distribution ' + name);
var args = Array.prototype.slice.call(arguments, 1),
distribution = distributions[name].apply(this, args);
return (function(distribution) {
// This is the public API for all distributions
var randFunctions = {
random: function(arg1, arg2, arg3) {
var size, min, max;
if (arguments.length > 3) {
throw new ArgumentsError('random', arguments.length, 0, 3);
// `random(max)` or `random(size)`
} else if (arguments.length === 1) {
if (isCollection(arg1)) {
size = arg1;
}
else {
max = arg1;
}
// `random(min, max)` or `random(size, max)`
} else if (arguments.length === 2) {
if (isCollection(arg1)) {
size = arg1;
max = arg2;
}
else {
min = arg1;
max = arg2;
}
// `random(size, min, max)`
} else {
size = arg1;
min = arg2;
max = arg3;
}
// TODO: validate type of min, max, and size
if (max === undefined) max = 1;
if (min === undefined) min = 0;
if (size !== undefined) {
var res = _randomDataForMatrix(size.valueOf(), min, max, _random);
return (size && size.isMatrix === true) ? matrix(res) : res;
}
else return _random(min, max);
},
randomInt: function(arg1, arg2, arg3) {
var size, min, max;
if (arguments.length > 3 || arguments.length < 1)
throw new ArgumentsError('randomInt', arguments.length, 1, 3);
// `random(max)` or `random(size)`
else if (arguments.length === 1)
if (isCollection(arg1)) {
size = arg1;
}
else {
max = arg1;
}
// `randomInt(min, max)` or `randomInt(size, max)`
else if (arguments.length === 2) {
if (isCollection(arg1)) {
size = arg1;
max = arg2;
}
else {
min = arg1;
max = arg2;
}
// `randomInt(size, min, max)`
} else {
size = arg1;
min = arg2;
max = arg3;
}
// TODO: validate type of min, max, and size
if (min === undefined) min = 0;
if (size !== undefined) {
var res = _randomDataForMatrix(size.valueOf(), min, max, _randomInt);
return (size && size.isMatrix === true) ? matrix(res) : res;
}
else return _randomInt(min, max);
},
pickRandom: function(possibles) {
if (arguments.length !== 1) {
throw new ArgumentsError('pickRandom', arguments.length, 1);
}
if (possibles && possibles.isMatrix === true) {
possibles = possibles.valueOf(); // get Array
}
else if (!Array.isArray(possibles)) {
throw new TypeError('Unsupported type of value in function pickRandom');
}
if (array.size(possibles).length > 1) {
throw new Error('Only one dimensional vectors supported');
}
// TODO: add support for multi dimensional matrices
return possibles[Math.floor(Math.random() * possibles.length)];
}
};
var _random = function(min, max) {
return min + distribution() * (max - min);
};
var _randomInt = function(min, max) {
return Math.floor(min + distribution() * (max - min));
};
// This is a function for generating a random matrix recursively.
var _randomDataForMatrix = function(size, min, max, randFunc) {
var data = [], length, i;
size = size.slice(0);
if (size.length > 1) {
for (i = 0, length = size.shift(); i < length; i++)
data.push(_randomDataForMatrix(size, min, max, randFunc));
} else {
for (i = 0, length = size.shift(); i < length; i++)
data.push(randFunc(min, max));
}
return data;
};
return randFunctions;
})(distribution);
}
// Each distribution is a function that takes no argument and when called returns
// a number between 0 and 1.
var distributions = {
uniform: function() {
return Math.random;
},
// Implementation of normal distribution using Box-Muller transform
// ref : http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
// We take : mean = 0.5, standard deviation = 1/6
// so that 99.7% values are in [0, 1].
normal: function() {
return function() {
var u1, u2,
picked = -1;
// We reject values outside of the interval [0, 1]
// TODO: check if it is ok to do that?
while (picked < 0 || picked > 1) {
u1 = Math.random();
u2 = Math.random();
picked = 1/6 * Math.pow(-2 * Math.log(u1), 0.5) * Math.cos(2 * Math.PI * u2) + 0.5;
}
return picked;
}
}
};
distribution.toTex = '\\mathrm{${name}}\\left(${args}\\right)';
return distribution;
}
exports.name = 'distribution';
exports.factory = factory;