mathjs/lib/function/combinatorics/bellNumbers.js

54 lines
1.4 KiB
JavaScript

'use strict';
function factory (type, config, load, typed) {
var add = load(require('../arithmetic/add'));
var stirlingS2 = load(require('./stirlingS2'));
var isNegative = load(require('../utils/isNegative'));
var isInteger = load(require('../utils/isInteger'));
/**
* The Bell Numbers count the number of partitions of a set. A partition is a pairwise disjoint subset of S whose union is S.
* bellNumbers only takes integer arguments.
* The following condition must be enforced: n >= 0
*
* Syntax:
*
* math.bellNumbers(n)
*
* Examples:
*
* math.bellNumbers(3); // returns 5;
* math.bellNumbers(8); // returns 4140;
*
* See also:
*
* stirlingS2
*
* @param {Number | BigNumber} n Total number of objects in the set
* @return {Number | BigNumber} B(n)
*/
var bellNumbers = typed('bellNumbers', {
'number | BigNumber': function (n) {
if (!isInteger(n) || isNegative(n)) {
throw new TypeError('Non-negative integer value expected in function bellNumbers');
}
// Sum (k=0, n) S(n,k).
var result = 0;
for(var i = 0; i <= n; i++) {
result = add(result, stirlingS2(n, i));
}
return result;
}
});
bellNumbers.toTex = '\\mathrm{B}_{${args[0]}}';
return bellNumbers;
}
exports.name = 'bellNumbers';
exports.factory = factory;