mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
156 lines
4.1 KiB
JavaScript
156 lines
4.1 KiB
JavaScript
'use strict';
|
|
|
|
function factory (type, config, load) {
|
|
|
|
var divideScalar = load(require('../../arithmetic/divideScalar'));
|
|
var sqrt = load(require('../../arithmetic/sqrt'));
|
|
var subtract = load(require('../../arithmetic/subtract'));
|
|
var multiply = load(require('../../arithmetic/multiply'));
|
|
var im = load(require('../../complex/im'));
|
|
var re = load(require('../../complex/re'));
|
|
var conj = load(require('../../complex/conj'));
|
|
var equal = load(require('../../relational/equal'));
|
|
var smallerEq = load(require('../../relational/smallerEq'));
|
|
|
|
var cs_symperm = load(require('./cs_symperm'));
|
|
var cs_ereach = load(require('./cs_ereach'));
|
|
|
|
var SparseMatrix = type.SparseMatrix;
|
|
|
|
/**
|
|
* Computes the Cholesky factorization of matrix A. It computes L and P so
|
|
* L * L' = P * A * P'
|
|
*
|
|
* @param {Matrix} m The A Matrix to factorize, only upper triangular part used
|
|
* @param {Object} s The symbolic analysis from cs_schol()
|
|
*
|
|
* @return {Number} The numeric Cholesky factorization of A or null
|
|
*
|
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
|
*/
|
|
var cs_chol = function (m, s) {
|
|
// validate input
|
|
if (!m)
|
|
return null;
|
|
// m arrays
|
|
var size = m._size;
|
|
// columns
|
|
var n = size[1];
|
|
// symbolic analysis result
|
|
var parent = s.parent;
|
|
var cp = s.cp;
|
|
var pinv = s.pinv;
|
|
// L arrays
|
|
var lvalues = [];
|
|
var lindex = [];
|
|
var lptr = [];
|
|
// L
|
|
var L = new SparseMatrix({
|
|
values: lvalues,
|
|
index: lindex,
|
|
ptr: lptr,
|
|
size:[n, n]
|
|
});
|
|
// vars
|
|
var c = []; // (2 * n)
|
|
var x = []; // (n);
|
|
// compute C = P * A * P'
|
|
var cm = pinv ? cs_symperm (m, pinv, 1) : m;
|
|
// C matrix arrays
|
|
var cvalues = cm._values;
|
|
var cindex = cm._index;
|
|
var cptr = cm._ptr;
|
|
// vars
|
|
var k, p;
|
|
// initialize variables
|
|
for (k = 0; k < n; k++)
|
|
lptr[k] = c[k] = cp[k];
|
|
// compute L(k,:) for L*L' = C
|
|
for (k = 0; k < n; k++) {
|
|
// nonzero pattern of L(k,:)
|
|
var top = cs_ereach(cm, k, parent, c);
|
|
// x (0:k) is now zero
|
|
x[k] = 0;
|
|
// x = full(triu(C(:,k)))
|
|
for (p = cptr[k]; p < cptr[k+1]; p++) {
|
|
if (cindex[p] <= k)
|
|
x[cindex[p]] = cvalues[p];
|
|
}
|
|
// d = C(k,k)
|
|
var d = x[k];
|
|
// clear x for k+1st iteration
|
|
x[k] = 0;
|
|
// solve L(0:k-1,0:k-1) * x = C(:,k)
|
|
for (; top < n; top++) {
|
|
// s[top..n-1] is pattern of L(k,:)
|
|
var i = s[top];
|
|
// L(k,i) = x (i) / L(i,i)
|
|
var lki = divideScalar(x[i], lvalues[lptr[i]]);
|
|
// clear x for k+1st iteration
|
|
x[i] = 0;
|
|
for (p = lptr[i] + 1; p < c[i]; p++) {
|
|
// row
|
|
var r = lindex[p];
|
|
// update x[r]
|
|
x[r] = subtract(x[r], multiply(lvalues[p], lki));
|
|
}
|
|
// d = d - L(k,i)*L(k,i)
|
|
d = subtract(d, multiply(lki, conj(lki)));
|
|
p = c[i]++;
|
|
// store L(k,i) in column i
|
|
lindex[p] = k;
|
|
lvalues[p] = conj(lki);
|
|
}
|
|
// compute L(k,k)
|
|
if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
|
|
// not pos def
|
|
return null;
|
|
}
|
|
p = c[k]++;
|
|
// store L(k,k) = sqrt(d) in column k
|
|
lindex[p] = k;
|
|
lvalues[p] = sqrt(d);
|
|
}
|
|
// finalize L
|
|
lptr[n] = cp[n];
|
|
// P matrix
|
|
var P;
|
|
// check we need to calculate P
|
|
if (pinv) {
|
|
// P arrays
|
|
var pvalues = [];
|
|
var pindex = [];
|
|
var pptr = [];
|
|
// create P matrix
|
|
for (p = 0; p < n; p++) {
|
|
// initialize ptr (one value per column)
|
|
pptr[p] = p;
|
|
// index (apply permutation vector)
|
|
pindex.push(pinv[p]);
|
|
// value 1
|
|
pvalues.push(1);
|
|
}
|
|
// update ptr
|
|
pptr[n] = n;
|
|
// P
|
|
P = new SparseMatrix({
|
|
values: pvalues,
|
|
index: pindex,
|
|
ptr: pptr,
|
|
size: [n, n]
|
|
});
|
|
}
|
|
// return L & P
|
|
return {
|
|
L: L,
|
|
P: P
|
|
};
|
|
};
|
|
|
|
return cs_chol;
|
|
}
|
|
|
|
exports.name = 'cs_chol';
|
|
exports.path = 'sparse';
|
|
exports.factory = factory;
|