mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
126 lines
3.9 KiB
JavaScript
126 lines
3.9 KiB
JavaScript
'use strict';
|
|
|
|
var isArray = Array.isArray;
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var matrix = load(require('../../../type/matrix/function/matrix'));
|
|
var lup = load(require('../decomposition/lup'));
|
|
var slu = load(require('../decomposition/slu'));
|
|
var cs_ipvec = load(require('../sparse/cs_ipvec'));
|
|
|
|
var solveValidation = load(require('./utils/solveValidation'));
|
|
|
|
var usolve = load(require('./usolve'));
|
|
var lsolve = load(require('./lsolve'));
|
|
|
|
/**
|
|
* Solves the linear system `A * x = b` where `A` is an [n x n] matrix and `b` is a [n] column vector.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.lusolve(A, b) // returns column vector with the solution to the linear system A * x = b
|
|
* math.lusolve(lup, b) // returns column vector with the solution to the linear system A * x = b, lup = math.lup(A)
|
|
*
|
|
* Examples:
|
|
*
|
|
* var m = [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]];
|
|
*
|
|
* var x = math.lusolve(m, [-1, -1, -1, -1]); // x = [[-1], [-0.5], [-1/3], [-0.25]]
|
|
*
|
|
* var f = math.lup(m);
|
|
* var x1 = math.lusolve(f, [-1, -1, -1, -1]); // x1 = [[-1], [-0.5], [-1/3], [-0.25]]
|
|
* var x2 = math.lusolve(f, [1, 2, 1, -1]); // x2 = [[1], [1], [1/3], [-0.25]]
|
|
*
|
|
* var a = [[-2, 3], [2, 1]];
|
|
* var b = [11, 9];
|
|
* var x = lusolve(a, b); // [[-5.5], [20]]
|
|
*
|
|
* See also:
|
|
*
|
|
* lup, slu, lsolve, usolve
|
|
*
|
|
* @param {Matrix | Array | Object} A Invertible Matrix or the Matrix LU decomposition
|
|
* @param {Matrix | Array} b Column Vector
|
|
* @param {number} [order] The Symbolic Ordering and Analysis order, see slu for details. Matrix must be a SparseMatrix
|
|
* @param {Number} [threshold] Partial pivoting threshold (1 for partial pivoting), see slu for details. Matrix must be a SparseMatrix.
|
|
*
|
|
* @return {DenseMatrix | Array} Column vector with the solution to the linear system A * x = b
|
|
*/
|
|
var lusolve = typed('lusolve', {
|
|
|
|
'Array, Array | Matrix': function (a, b) {
|
|
// convert a to matrix
|
|
a = matrix(a);
|
|
// matrix lup decomposition
|
|
var d = lup(a);
|
|
// solve
|
|
var x = _lusolve(d.L, d.U, d.p, null, b);
|
|
// convert result to array
|
|
return x.valueOf();
|
|
},
|
|
|
|
'DenseMatrix, Array | Matrix': function (a, b) {
|
|
// matrix lup decomposition
|
|
var d = lup(a);
|
|
// solve
|
|
return _lusolve(d.L, d.U, d.p, null, b);
|
|
},
|
|
|
|
'SparseMatrix, Array | Matrix': function (a, b) {
|
|
// matrix lup decomposition
|
|
var d = lup(a);
|
|
// solve
|
|
return _lusolve(d.L, d.U, d.p, null, b);
|
|
},
|
|
|
|
'SparseMatrix, Array | Matrix, number, number': function (a, b, order, threshold) {
|
|
// matrix lu decomposition
|
|
var d = slu(a, order, threshold);
|
|
// solve
|
|
return _lusolve(d.L, d.U, d.p, d.q, b);
|
|
},
|
|
|
|
'Object, Array | Matrix': function (d, b) {
|
|
// solve
|
|
return _lusolve(d.L, d.U, d.p, d.q, b);
|
|
}
|
|
});
|
|
|
|
var _toMatrix = function (a) {
|
|
// check it is a matrix
|
|
if (a && a.isMatrix === true)
|
|
return a;
|
|
// check array
|
|
if (isArray(a))
|
|
return matrix(a);
|
|
// throw
|
|
throw new TypeError('Invalid Matrix LU decomposition');
|
|
};
|
|
|
|
var _lusolve = function (l, u, p, q, b) {
|
|
// verify L, U, P
|
|
l = _toMatrix(l);
|
|
u = _toMatrix(u);
|
|
// validate matrix and vector
|
|
b = solveValidation(l, b, false);
|
|
// apply row permutations if needed (b is a DenseMatrix)
|
|
if (p)
|
|
b._data = cs_ipvec(p, b._data);
|
|
// use forward substitution to resolve L * y = b
|
|
var y = lsolve(l, b);
|
|
// use backward substitution to resolve U * x = y
|
|
var x = usolve(u, y);
|
|
// apply column permutations if needed (x is a DenseMatrix)
|
|
if (q)
|
|
x._data = cs_ipvec(q, x._data);
|
|
// return solution
|
|
return x;
|
|
};
|
|
|
|
return lusolve;
|
|
}
|
|
|
|
exports.name = 'lusolve';
|
|
exports.factory = factory;
|