2015-03-04 13:53:32 -05:00

95 lines
2.2 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
Unit = require('../../type/Unit'),
collection = math.collection,
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isUnit = Unit.isUnit,
isCollection = collection.isCollection,
bigAsech = util.bignumber.acosh_asinh_asech_acsch;
/**
* Calculate the hyperbolic arccos of a value,
* defined as `asech(x) = ln(sqrt(1/x^2 - 1) + 1/x)`.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.asech(x)
*
* Examples:
*
* math.asech(0.5); // returns 1.3169578969248166
*
* See also:
*
* acsch, acoth
*
* @param {Number | Boolean | Complex | Unit | Array | Matrix | null} x Function input
* @return {Number | Complex | Array | Matrix} Hyperbolic arcsecant of x
*/
math.asech = function asech(x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('asech', arguments.length, 1);
}
if (isNumber(x)) {
if (x <= 1 && x >= -1) {
x = 1 / x;
var ret = Math.sqrt(x*x - 1);
if (x > 0) {
return Math.log(ret + x);
}
return new Complex(Math.log(ret - x), Math.PI);
}
return asech(new Complex(x, 0));
}
if (isComplex(x)) {
if (x.re == 0 && x.im == 0) {
return new Complex(Infinity, 0);
}
// acsch(z) = -i*asinh(1/z)
var den = x.re*x.re + x.im*x.im;
x = (den != 0)
? new Complex(
x.re / den,
-x.im / den
)
: new Complex(
(x.re != 0) ? (x.re / 0) : 0,
(x.im != 0) ? -(x.im / 0) : 0
);
return math.acosh(x);
}
if (isCollection(x)) {
return collection.deepMap(x, asech);
}
if (isBoolean(x) || x === null) {
return (x) ? 0 : Infinity;
}
if (x instanceof BigNumber) {
return bigAsech(x, BigNumber, false, true);
}
throw new math.error.UnsupportedTypeError('asech', math['typeof'](x));
};
};