189 lines
4.7 KiB
JavaScript

'use strict';
module.exports = function (math, config) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
collection = math.collection,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isNumber = util.number.isNumber,
isInteger = util.number.isInteger,
isCollection = collection.isCollection;
/**
* Compute the gamma function of a value using Lanczos approximation for
* small values, and an extended Stirling approximation for large values.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.gamma(n)
*
* Examples:
*
* math.gamma(5); // returns 24
* math.gamma(-0.5); // returns -3.5449077018110335
* math.gamma(math.i); // returns -0.15494982830180973 - 0.49801566811835596i
*
* See also:
*
* combinations, factorial, permutations
*
* @param {Number | Array | Matrix | Boolean | null} n A real or complex number
* @return {Number | Array | Matrix} The gamma of `n`
*/
math.gamma = function gamma (n) {
var t, x;
var g = 4.7421875;
if (arguments.length != 1) {
throw new math.error.ArgumentsError('gamma', arguments.length, 1);
}
if (isNumber(n)) {
if (isInteger(n)) {
if (n <= 0) {
return isFinite(n)
? Infinity
: NaN;
}
if (n > 171) {
return Infinity; // Will overflow
}
var value = n - 2;
var res = n - 1;
while (value > 1) {
res *= value;
value--;
}
if (res == 0) {
res = 1; // 0! is per definition 1
}
return res;
}
if (n < 0.5) {
return Math.PI / (Math.sin(Math.PI*n) * gamma(1-n));
}
if (n >= 171.35) {
return Infinity; // will overflow
}
if (n > 85.0) { // Extended Stirling Approx
var twoN = n*n;
var threeN = twoN*n;
var fourN = threeN*n;
var fiveN = fourN*n;
return Math.sqrt(2*Math.PI/n) * Math.pow((n/Math.E), n) *
(1 + 1/(12*n) + 1/(288*twoN) - 139/(51840*threeN) -
571/(2488320*fourN) + 163879/(209018880*fiveN) +
5246819/(75246796800*fiveN*n));
}
--n;
x = p[0];
for (var i = 1; i < p.length; ++i) {
x += p[i] / (n+i);
}
t = n + g + 0.5;
return Math.sqrt(2*Math.PI) * Math.pow(t, n+0.5) * Math.exp(-t) * x;
}
if (isComplex(n)) {
if (n.im == 0) {
return gamma(n.re);
}
n = new Complex(n.re - 1, n.im);
x = new Complex(p[0], 0);
for (var i = 1; i < p.length; ++i) {
var real = n.re + i; // x += p[i]/(n+i)
var den = real*real + n.im*n.im;
if (den != 0) {
x.re += p[i] * real / den;
x.im += -(p[i] * n.im) / den;
} else {
x.re = p[i] < 0
? -Infinity
: Infinity;
}
}
t = new Complex(n.re + g + 0.5, n.im);
var twoPiSqrt = Math.sqrt(2*Math.PI);
n.re += 0.5;
var result = math.pow(t, n);
if (result.im == 0) { // sqrt(2*PI)*result
result.re *= twoPiSqrt;
} else if (result.re == 0) {
result.im *= twoPiSqrt;
} else {
result.re *= twoPiSqrt;
result.im *= twoPiSqrt;
}
var r = Math.exp(-t.re); // exp(-t)
t.re = r * Math.cos(-t.im);
t.im = r * Math.sin(-t.im);
return math.multiply(math.multiply(result, t), x);
}
if (n instanceof BigNumber) {
if (n.isInteger()) {
return n.isNegative() || n.isZero()
? new BigNumber(Infinity)
: math.factorial(n.minus(1));
}
if (!n.isFinite()) {
return new BigNumber(n.isNegative()
? NaN
: Infinity);
}
}
if (isBoolean(n) || n === null) {
return n
? 1
: Infinity;
}
if (isCollection(n)) {
return collection.deepMap(n, gamma);
}
throw new math.error.UnsupportedTypeError('gamma', math['typeof'](n));
};
var p = [
0.99999999999999709182,
57.156235665862923517,
-59.597960355475491248,
14.136097974741747174,
-0.49191381609762019978,
0.33994649984811888699e-4,
0.46523628927048575665e-4,
-0.98374475304879564677e-4,
0.15808870322491248884e-3,
-0.21026444172410488319e-3,
0.21743961811521264320e-3,
-0.16431810653676389022e-3,
0.84418223983852743293e-4,
-0.26190838401581408670e-4,
0.36899182659531622704e-5
];
};