mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
215 lines
5.9 KiB
JavaScript
215 lines
5.9 KiB
JavaScript
'use strict';
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var abs = load(require('../arithmetic/abs'));
|
|
var add = load(require('../arithmetic/add'));
|
|
var pow = load(require('../arithmetic/pow'));
|
|
var sqrt = load(require('../arithmetic/sqrt'));
|
|
var multiply = load(require('../arithmetic/multiply'));
|
|
var equalScalar = load(require('../relational/equalScalar'));
|
|
var larger = load(require('../relational/larger'));
|
|
var smaller = load(require('../relational/smaller'));
|
|
var matrix = load(require('../../type/matrix/function/matrix'));
|
|
var trace = load(require('../matrix/trace'));
|
|
var transpose = load(require('../matrix/transpose'));
|
|
|
|
var complexAbs = typed.find(abs, ['Complex']);
|
|
|
|
/**
|
|
* Calculate the norm of a number, vector or matrix.
|
|
*
|
|
* The second parameter p is optional. If not provided, it defaults to 2.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.norm(x)
|
|
* math.norm(x, p)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.abs(-3.5); // returns 3.5
|
|
* math.norm(-3.5); // returns 3.5
|
|
*
|
|
* math.norm(math.complex(3, -4)); // returns 5
|
|
*
|
|
* math.norm([1, 2, -3], Infinity); // returns 3
|
|
* math.norm([1, 2, -3], -Infinity); // returns 1
|
|
*
|
|
* math.norm([3, 4], 2); // returns 5
|
|
*
|
|
* math.norm([[1, 2], [3, 4]], 1) // returns 6
|
|
* math.norm([[1, 2], [3, 4]], 'inf'); // returns 7
|
|
* math.norm([[1, 2], [3, 4]], 'fro'); // returns 5.477225575051661
|
|
*
|
|
* See also:
|
|
*
|
|
* abs
|
|
*
|
|
* @param {number | BigNumber | Complex | Array | Matrix} x
|
|
* Value for which to calculate the norm
|
|
* @param {number | BigNumber | string} [p=2]
|
|
* Vector space.
|
|
* Supported numbers include Infinity and -Infinity.
|
|
* Supported strings are: 'inf', '-inf', and 'fro' (The Frobenius norm)
|
|
* @return {number | BigNumber} the p-norm
|
|
*/
|
|
var norm = typed('norm', {
|
|
'number': Math.abs,
|
|
|
|
'Complex': complexAbs,
|
|
|
|
'BigNumber': function (x) {
|
|
// norm(x) = abs(x)
|
|
return x.abs();
|
|
},
|
|
|
|
'boolean | null' : function (x) {
|
|
// norm(x) = abs(x)
|
|
return Math.abs(x);
|
|
},
|
|
|
|
'Array': function (x) {
|
|
return _norm(matrix(x), 2);
|
|
},
|
|
|
|
'Matrix': function (x) {
|
|
return _norm(x, 2);
|
|
},
|
|
|
|
'number | Complex | BigNumber | boolean | null, number | BigNumber | string': function (x) {
|
|
// ignore second parameter, TODO: remove the option of second parameter for these types
|
|
return norm(x);
|
|
},
|
|
|
|
'Array, number | BigNumber | string': function (x, p) {
|
|
return _norm(matrix(x), p);
|
|
},
|
|
|
|
'Matrix, number | BigNumber | string': function (x, p) {
|
|
return _norm(x, p);
|
|
}
|
|
});
|
|
|
|
/**
|
|
* Calculate the norm for an array
|
|
* @param {Array} x
|
|
* @param {number | string} p
|
|
* @returns {number} Returns the norm
|
|
* @private
|
|
*/
|
|
function _norm (x, p) {
|
|
// size
|
|
var sizeX = x.size();
|
|
|
|
// check if it is a vector
|
|
if (sizeX.length == 1) {
|
|
// check p
|
|
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
|
|
// norm(x, Infinity) = max(abs(x))
|
|
var pinf = 0;
|
|
// skip zeros since abs(0) == 0
|
|
x.forEach(
|
|
function (value) {
|
|
var v = abs(value);
|
|
if (larger(v, pinf))
|
|
pinf = v;
|
|
},
|
|
true);
|
|
return pinf;
|
|
}
|
|
if (p === Number.NEGATIVE_INFINITY || p === '-inf') {
|
|
// norm(x, -Infinity) = min(abs(x))
|
|
var ninf;
|
|
// skip zeros since abs(0) == 0
|
|
x.forEach(
|
|
function (value) {
|
|
var v = abs(value);
|
|
if (!ninf || smaller(v, ninf))
|
|
ninf = v;
|
|
},
|
|
true);
|
|
return ninf || 0;
|
|
}
|
|
if (p === 'fro') {
|
|
return _norm(x, 2);
|
|
}
|
|
if (typeof p === 'number' && !isNaN(p)) {
|
|
// check p != 0
|
|
if (!equalScalar(p, 0)) {
|
|
// norm(x, p) = sum(abs(xi) ^ p) ^ 1/p
|
|
var n = 0;
|
|
// skip zeros since abs(0) == 0
|
|
x.forEach(
|
|
function (value) {
|
|
n = add(pow(abs(value), p), n);
|
|
},
|
|
true);
|
|
return pow(n, 1 / p);
|
|
}
|
|
return Number.POSITIVE_INFINITY;
|
|
}
|
|
// invalid parameter value
|
|
throw new Error('Unsupported parameter value');
|
|
}
|
|
// MxN matrix
|
|
if (sizeX.length == 2) {
|
|
// check p
|
|
if (p === 1) {
|
|
// norm(x) = the largest column sum
|
|
var c = [];
|
|
// result
|
|
var maxc = 0;
|
|
// skip zeros since abs(0) == 0
|
|
x.forEach(
|
|
function (value, index) {
|
|
var j = index[1];
|
|
var cj = add(c[j] || 0, abs(value));
|
|
if (larger(cj, maxc))
|
|
maxc = cj;
|
|
c[j] = cj;
|
|
},
|
|
true);
|
|
return maxc;
|
|
}
|
|
if (p === Number.POSITIVE_INFINITY || p === 'inf') {
|
|
// norm(x) = the largest row sum
|
|
var r = [];
|
|
// result
|
|
var maxr = 0;
|
|
// skip zeros since abs(0) == 0
|
|
x.forEach(
|
|
function (value, index) {
|
|
var i = index[0];
|
|
var ri = add(r[i] || 0, abs(value));
|
|
if (larger(ri, maxr))
|
|
maxr = ri;
|
|
r[i] = ri;
|
|
},
|
|
true);
|
|
return maxr;
|
|
}
|
|
if (p === 'fro') {
|
|
// norm(x) = sqrt(sum(diag(x'x)))
|
|
return sqrt(trace(multiply(transpose(x), x)));
|
|
}
|
|
if (p === 2) {
|
|
// not implemented
|
|
throw new Error('Unsupported parameter value, missing implementation of matrix singular value decomposition');
|
|
}
|
|
// invalid parameter value
|
|
throw new Error('Unsupported parameter value');
|
|
}
|
|
}
|
|
|
|
norm.toTex = {
|
|
1: '\\left\\|${args[0]}\\right\\|',
|
|
2: '\\mathrm{${name}}\\left(${args}\\right)'
|
|
};
|
|
|
|
return norm;
|
|
}
|
|
|
|
exports.name = 'norm';
|
|
exports.factory = factory;
|