mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-18 14:59:29 +00:00
179 lines
4.8 KiB
JavaScript
179 lines
4.8 KiB
JavaScript
'use strict';
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var matrix = load(require('../../../type/matrix/function/matrix'));
|
|
var divideScalar = load(require('../../arithmetic/divideScalar'));
|
|
var multiplyScalar = load(require('../../arithmetic/multiplyScalar'));
|
|
var subtract = load(require('../../arithmetic/subtract'));
|
|
var equalScalar = load(require('../../relational/equalScalar'));
|
|
|
|
var solveValidation = load(require('./util/solveValidation'));
|
|
|
|
var DenseMatrix = type.DenseMatrix;
|
|
|
|
/**
|
|
* Solves the linear equation system by backward substitution. Matrix must be an upper triangular matrix.
|
|
*
|
|
* `U * x = b`
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.usolve(U, b);
|
|
*
|
|
* See also:
|
|
*
|
|
* lup, slu, usolve, lusolve
|
|
*
|
|
* @param {Matrix, Array} U A N x N matrix or array (U)
|
|
* @param {Matrix, Array} b A column vector with the b values
|
|
*
|
|
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
|
|
*/
|
|
var usolve = typed('usolve', {
|
|
|
|
'SparseMatrix, Array | Matrix': function (m, b) {
|
|
// process matrix
|
|
return _sparseBackwardSubstitution(m, b);
|
|
},
|
|
|
|
'DenseMatrix, Array | Matrix': function (m, b) {
|
|
// process matrix
|
|
return _denseBackwardSubstitution(m, b);
|
|
},
|
|
|
|
'Array, Array | Matrix': function (a, b) {
|
|
// create dense matrix from array
|
|
var m = matrix(a);
|
|
// use matrix implementation
|
|
var r = _denseBackwardSubstitution(m, b);
|
|
// result
|
|
return r.valueOf();
|
|
}
|
|
});
|
|
|
|
var _denseBackwardSubstitution = function (m, b) {
|
|
// validate matrix and vector, return copy of column vector b
|
|
b = solveValidation(m, b, true);
|
|
// column vector data
|
|
var bdata = b._data;
|
|
// rows & columns
|
|
var rows = m._size[0];
|
|
var columns = m._size[1];
|
|
// result
|
|
var x = [];
|
|
// arrays
|
|
var data = m._data;
|
|
// backward solve m * x = b, loop columns (backwards)
|
|
for (var j = columns - 1; j >= 0 ; j--) {
|
|
// b[j]
|
|
var bj = bdata[j][0] || 0;
|
|
// x[j]
|
|
var xj;
|
|
// backward substitution (outer product) avoids inner looping when bj == 0
|
|
if (!equalScalar(bj, 0)) {
|
|
// value @ [j, j]
|
|
var vjj = data[j][j];
|
|
// check vjj
|
|
if (equalScalar(vjj, 0)) {
|
|
// system cannot be solved
|
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
|
}
|
|
// calculate xj
|
|
xj = divideScalar(bj, vjj);
|
|
// loop rows
|
|
for (var i = j - 1; i >= 0; i--) {
|
|
// update copy of b
|
|
bdata[i] = [subtract(bdata[i][0] || 0, multiplyScalar(xj, data[i][j]))];
|
|
}
|
|
}
|
|
else {
|
|
// zero value @ j
|
|
xj = 0;
|
|
}
|
|
// update x
|
|
x[j] = [xj];
|
|
}
|
|
// return column vector
|
|
return new DenseMatrix({
|
|
data: x,
|
|
size: [rows, 1]
|
|
});
|
|
};
|
|
|
|
var _sparseBackwardSubstitution = function (m, b) {
|
|
// validate matrix and vector, return copy of column vector b
|
|
b = solveValidation(m, b, true);
|
|
// column vector data
|
|
var bdata = b._data;
|
|
// rows & columns
|
|
var rows = m._size[0];
|
|
var columns = m._size[1];
|
|
// matrix arrays
|
|
var values = m._values;
|
|
var index = m._index;
|
|
var ptr = m._ptr;
|
|
// vars
|
|
var i, k;
|
|
// result
|
|
var x = [];
|
|
// backward solve m * x = b, loop columns (backwards)
|
|
for (var j = columns - 1; j >= 0 ; j--) {
|
|
// b[j]
|
|
var bj = bdata[j][0] || 0;
|
|
// backward substitution (outer product) avoids inner looping when bj == 0
|
|
if (!equalScalar(bj, 0)) {
|
|
// value @ [j, j]
|
|
var vjj = 0;
|
|
// first & last indeces in column
|
|
var f = ptr[j];
|
|
var l = ptr[j + 1];
|
|
// values in column, find value @ [j, j], loop backwards
|
|
for (k = l - 1; k >= f; k--) {
|
|
// row
|
|
i = index[k];
|
|
// check row
|
|
if (i === j) {
|
|
// update vjj
|
|
vjj = values[k];
|
|
}
|
|
else if (i < j) {
|
|
// exit loop
|
|
break;
|
|
}
|
|
}
|
|
// at this point we must have a value @ [j, j]
|
|
if (equalScalar(vjj, 0)) {
|
|
// system cannot be solved, there is no value @ [j, j]
|
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
|
}
|
|
// calculate xj
|
|
var xj = divideScalar(bj, vjj);
|
|
// values in column, continue from last loop
|
|
for (; k >= f; k--) {
|
|
// row
|
|
i = index[k];
|
|
// update copy of b
|
|
bdata[i] = [subtract(bdata[i][0], multiplyScalar(xj, values[k]))];
|
|
}
|
|
// update x
|
|
x[j] = [xj];
|
|
}
|
|
else {
|
|
// update x
|
|
x[j] = [0];
|
|
}
|
|
}
|
|
// return vector
|
|
return new DenseMatrix({
|
|
data: x,
|
|
size: [rows, 1]
|
|
});
|
|
};
|
|
|
|
return usolve;
|
|
}
|
|
|
|
exports.name = 'usolve';
|
|
exports.factory = factory;
|