2015-06-10 20:53:50 +02:00

179 lines
4.8 KiB
JavaScript

'use strict';
function factory (type, config, load, typed) {
var matrix = load(require('../../../type/matrix/function/matrix'));
var divideScalar = load(require('../../arithmetic/divideScalar'));
var multiplyScalar = load(require('../../arithmetic/multiplyScalar'));
var subtract = load(require('../../arithmetic/subtract'));
var equalScalar = load(require('../../relational/equalScalar'));
var solveValidation = load(require('./util/solveValidation'));
var DenseMatrix = type.DenseMatrix;
/**
* Solves the linear equation system by backward substitution. Matrix must be an upper triangular matrix.
*
* `U * x = b`
*
* Syntax:
*
* math.usolve(U, b);
*
* See also:
*
* lup, slu, usolve, lusolve
*
* @param {Matrix, Array} U A N x N matrix or array (U)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
*/
var usolve = typed('usolve', {
'SparseMatrix, Array | Matrix': function (m, b) {
// process matrix
return _sparseBackwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function (m, b) {
// process matrix
return _denseBackwardSubstitution(m, b);
},
'Array, Array | Matrix': function (a, b) {
// create dense matrix from array
var m = matrix(a);
// use matrix implementation
var r = _denseBackwardSubstitution(m, b);
// result
return r.valueOf();
}
});
var _denseBackwardSubstitution = function (m, b) {
// validate matrix and vector, return copy of column vector b
b = solveValidation(m, b, true);
// column vector data
var bdata = b._data;
// rows & columns
var rows = m._size[0];
var columns = m._size[1];
// result
var x = [];
// arrays
var data = m._data;
// backward solve m * x = b, loop columns (backwards)
for (var j = columns - 1; j >= 0 ; j--) {
// b[j]
var bj = bdata[j][0] || 0;
// x[j]
var xj;
// backward substitution (outer product) avoids inner looping when bj == 0
if (!equalScalar(bj, 0)) {
// value @ [j, j]
var vjj = data[j][j];
// check vjj
if (equalScalar(vjj, 0)) {
// system cannot be solved
throw new Error('Linear system cannot be solved since matrix is singular');
}
// calculate xj
xj = divideScalar(bj, vjj);
// loop rows
for (var i = j - 1; i >= 0; i--) {
// update copy of b
bdata[i] = [subtract(bdata[i][0] || 0, multiplyScalar(xj, data[i][j]))];
}
}
else {
// zero value @ j
xj = 0;
}
// update x
x[j] = [xj];
}
// return column vector
return new DenseMatrix({
data: x,
size: [rows, 1]
});
};
var _sparseBackwardSubstitution = function (m, b) {
// validate matrix and vector, return copy of column vector b
b = solveValidation(m, b, true);
// column vector data
var bdata = b._data;
// rows & columns
var rows = m._size[0];
var columns = m._size[1];
// matrix arrays
var values = m._values;
var index = m._index;
var ptr = m._ptr;
// vars
var i, k;
// result
var x = [];
// backward solve m * x = b, loop columns (backwards)
for (var j = columns - 1; j >= 0 ; j--) {
// b[j]
var bj = bdata[j][0] || 0;
// backward substitution (outer product) avoids inner looping when bj == 0
if (!equalScalar(bj, 0)) {
// value @ [j, j]
var vjj = 0;
// first & last indeces in column
var f = ptr[j];
var l = ptr[j + 1];
// values in column, find value @ [j, j], loop backwards
for (k = l - 1; k >= f; k--) {
// row
i = index[k];
// check row
if (i === j) {
// update vjj
vjj = values[k];
}
else if (i < j) {
// exit loop
break;
}
}
// at this point we must have a value @ [j, j]
if (equalScalar(vjj, 0)) {
// system cannot be solved, there is no value @ [j, j]
throw new Error('Linear system cannot be solved since matrix is singular');
}
// calculate xj
var xj = divideScalar(bj, vjj);
// values in column, continue from last loop
for (; k >= f; k--) {
// row
i = index[k];
// update copy of b
bdata[i] = [subtract(bdata[i][0], multiplyScalar(xj, values[k]))];
}
// update x
x[j] = [xj];
}
else {
// update x
x[j] = [0];
}
}
// return vector
return new DenseMatrix({
data: x,
size: [rows, 1]
});
};
return usolve;
}
exports.name = 'usolve';
exports.factory = factory;