55 lines
1.6 KiB
JavaScript

'use strict'
/**
* This function determines if j is a leaf of the ith row subtree.
* Consider A(i,j), node j in ith row subtree and return lca(jprev,j)
*
* @param {Number} i The ith row subtree
* @param {Number} j The node to test
* @param {Array} w The workspace array
* @param {Number} first The index offset within the workspace for the first array
* @param {Number} maxfirst The index offset within the workspace for the maxfirst array
* @param {Number} prevleaf The index offset within the workspace for the prevleaf array
* @param {Number} ancestor The index offset within the workspace for the ancestor array
*
* @return {Object}
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
export function csLeaf (i, j, w, first, maxfirst, prevleaf, ancestor) {
let s, sparent, jprev
// our result
let jleaf = 0
let q
// check j is a leaf
if (i <= j || w[first + j] <= w[maxfirst + i]) { return (-1) }
// update max first[j] seen so far
w[maxfirst + i] = w[first + j]
// jprev = previous leaf of ith subtree
jprev = w[prevleaf + i]
w[prevleaf + i] = j
// check j is first or subsequent leaf
if (jprev === -1) {
// 1st leaf, q = root of ith subtree
jleaf = 1
q = i
} else {
// update jleaf
jleaf = 2
// q = least common ancester (jprev,j)
for (q = jprev; q !== w[ancestor + q]; q = w[ancestor + q]);
for (s = jprev; s !== q; s = sparent) {
// path compression
sparent = w[ancestor + s]
w[ancestor + s] = q
}
}
return {
jleaf: jleaf,
q: q
}
}