mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
249 lines
6.1 KiB
JavaScript
249 lines
6.1 KiB
JavaScript
'use strict';
|
|
|
|
module.exports = function(math) {
|
|
var util = require('../../util/index'),
|
|
|
|
BigNumber = math.type.BigNumber,
|
|
Complex = require('../../type/Complex'),
|
|
Matrix = math.type.Matrix,
|
|
Unit = require('../../type/Unit'),
|
|
collection = math.collection,
|
|
|
|
isNumber = util.number.isNumber,
|
|
isBoolean = util['boolean'].isBoolean,
|
|
isComplex = Complex.isComplex,
|
|
isArray = Array.isArray,
|
|
isUnit = Unit.isUnit;
|
|
|
|
/**
|
|
* Multiply two values, `x * y`. The result is squeezed.
|
|
* For matrices, the matrix product is calculated.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.multiply(x, y)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.multiply(4, 5.2); // returns Number 20.8
|
|
*
|
|
* var a = math.complex(2, 3);
|
|
* var b = math.complex(4, 1);
|
|
* math.multiply(a, b); // returns Complex 5 + 14i
|
|
*
|
|
* var c = [[1, 2], [4, 3]];
|
|
* var d = [[1, 2, 3], [3, -4, 7]];
|
|
* math.multiply(c, d); // returns Array [[7, -6, 17], [13, -4, 33]]
|
|
*
|
|
* var e = math.unit('2.1 km');
|
|
* math.multiply(3, e); // returns Unit 6.3 km
|
|
*
|
|
* See also:
|
|
*
|
|
* divide
|
|
*
|
|
* @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} x First value to multiply
|
|
* @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} y Second value to multiply
|
|
* @return {Number | BigNumber | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
|
|
*/
|
|
math.multiply = function multiply(x, y) {
|
|
var res;
|
|
|
|
if (arguments.length != 2) {
|
|
throw new math.error.ArgumentsError('multiply', arguments.length, 2);
|
|
}
|
|
|
|
if (isNumber(x)) {
|
|
if (isNumber(y)) {
|
|
// number * number
|
|
return x * y;
|
|
}
|
|
else if (isComplex(y)) {
|
|
// number * complex
|
|
return _multiplyComplex(new Complex(x, 0), y);
|
|
}
|
|
else if (isUnit(y)) {
|
|
res = y.clone();
|
|
res.value = (res.value === null) ? res._normalize(x) : (res.value * x);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if (isComplex(x)) {
|
|
if (isNumber(y)) {
|
|
// complex * number
|
|
return _multiplyComplex(x, new Complex(y, 0));
|
|
}
|
|
else if (isComplex(y)) {
|
|
// complex * complex
|
|
return _multiplyComplex(x, y);
|
|
}
|
|
}
|
|
|
|
if (x instanceof BigNumber) {
|
|
// try to convert to big number
|
|
if (isNumber(y)) {
|
|
y = BigNumber.convert(y);
|
|
}
|
|
else if (isBoolean(y) || y === null) {
|
|
y = new BigNumber(y ? 1 : 0);
|
|
}
|
|
|
|
if (y instanceof BigNumber) {
|
|
return x.times(y);
|
|
}
|
|
|
|
// downgrade to Number
|
|
return multiply(x.toNumber(), y);
|
|
}
|
|
if (y instanceof BigNumber) {
|
|
// try to convert to big number
|
|
if (isNumber(x)) {
|
|
x = BigNumber.convert(x);
|
|
}
|
|
else if (isBoolean(x) || x === null) {
|
|
x = new BigNumber(x ? 1 : 0);
|
|
}
|
|
|
|
if (x instanceof BigNumber) {
|
|
return x.times(y);
|
|
}
|
|
|
|
// downgrade to Number
|
|
return multiply(x, y.toNumber());
|
|
}
|
|
|
|
if (isUnit(x)) {
|
|
if (isNumber(y)) {
|
|
res = x.clone();
|
|
res.value = (res.value === null) ? res._normalize(y) : (res.value * y);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if (isArray(x)) {
|
|
// create dense matrix from array
|
|
var m = math.matrix(x);
|
|
// use optimized operations in matrix
|
|
var r = m.multiply(y);
|
|
// check result
|
|
if (r instanceof Matrix) {
|
|
// check we need to return a matrix
|
|
if (y instanceof Matrix)
|
|
return r;
|
|
// output should be an array
|
|
return r.valueOf();
|
|
}
|
|
// scalar
|
|
return r;
|
|
}
|
|
|
|
if (x instanceof Matrix) {
|
|
// use optimized matrix implementation
|
|
return x.multiply(y);
|
|
}
|
|
|
|
if (isArray(y)) {
|
|
// scalar * array
|
|
return collection.deepMap2(x, y, multiply);
|
|
}
|
|
else if (y instanceof Matrix) {
|
|
// adapter function
|
|
var mf = function (v) {
|
|
return multiply(x, v);
|
|
};
|
|
// scalar * matrix
|
|
return collection.deepMap(y, mf, true);
|
|
}
|
|
|
|
if (isBoolean(x) || x === null) {
|
|
return multiply(+x, y);
|
|
}
|
|
if (isBoolean(y) || y === null) {
|
|
return multiply(x, +y);
|
|
}
|
|
|
|
throw new math.error.UnsupportedTypeError('multiply', math['typeof'](x), math['typeof'](y));
|
|
};
|
|
|
|
/**
|
|
* Multiply two complex numbers. x * y or multiply(x, y)
|
|
* @param {Complex} x
|
|
* @param {Complex} y
|
|
* @return {Complex | Number} res
|
|
* @private
|
|
*/
|
|
function _multiplyComplex (x, y) {
|
|
// Note: we test whether x or y are pure real or pure complex,
|
|
// to prevent unnecessary NaN values. For example, Infinity*i should
|
|
// result in Infinity*i, and not in NaN+Infinity*i
|
|
|
|
if (x.im == 0) {
|
|
// x is pure real
|
|
if (y.im == 0) {
|
|
// y is pure real
|
|
return new Complex(x.re * y.re, 0);
|
|
}
|
|
else if (y.re == 0) {
|
|
// y is pure complex
|
|
return new Complex(
|
|
0,
|
|
x.re * y.im
|
|
);
|
|
}
|
|
else {
|
|
// y has a real and complex part
|
|
return new Complex(
|
|
x.re * y.re,
|
|
x.re * y.im
|
|
);
|
|
}
|
|
}
|
|
else if (x.re == 0) {
|
|
// x is pure complex
|
|
if (y.im == 0) {
|
|
// y is pure real
|
|
return new Complex(
|
|
0,
|
|
x.im * y.re
|
|
);
|
|
}
|
|
else if (y.re == 0) {
|
|
// y is pure complex
|
|
return new Complex(-x.im * y.im, 0);
|
|
}
|
|
else {
|
|
// y has a real and complex part
|
|
return new Complex(
|
|
-x.im * y.im,
|
|
x.im * y.re
|
|
);
|
|
}
|
|
}
|
|
else {
|
|
// x has a real and complex part
|
|
if (y.im == 0) {
|
|
// y is pure real
|
|
return new Complex(
|
|
x.re * y.re,
|
|
x.im * y.re
|
|
);
|
|
}
|
|
else if (y.re == 0) {
|
|
// y is pure complex
|
|
return new Complex(
|
|
-x.im * y.im,
|
|
x.re * y.im
|
|
);
|
|
}
|
|
else {
|
|
// y has a real and complex part
|
|
return new Complex(
|
|
x.re * y.re - x.im * y.im,
|
|
x.re * y.im + x.im * y.re
|
|
);
|
|
}
|
|
}
|
|
}
|
|
};
|