mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
203 lines
5.0 KiB
JavaScript
203 lines
5.0 KiB
JavaScript
'use strict';
|
|
|
|
var deepMap = require('../../utils/collection/deepMap');
|
|
var isInteger = require('../../utils/number').isInteger;
|
|
|
|
function factory (type, config, load, typed) {
|
|
var multiply = load(require('../arithmetic/multiply'));
|
|
var pow = load(require('../arithmetic/pow'));
|
|
|
|
/**
|
|
* Compute the gamma function of a value using Lanczos approximation for
|
|
* small values, and an extended Stirling approximation for large values.
|
|
*
|
|
* For matrices, the function is evaluated element wise.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.gamma(n)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.gamma(5); // returns 24
|
|
* math.gamma(-0.5); // returns -3.5449077018110335
|
|
* math.gamma(math.i); // returns -0.15494982830180973 - 0.49801566811835596i
|
|
*
|
|
* See also:
|
|
*
|
|
* combinations, factorial, permutations
|
|
*
|
|
* @param {number | Array | Matrix} n A real or complex number
|
|
* @return {number | Array | Matrix} The gamma of `n`
|
|
*/
|
|
var gamma = typed('gamma', {
|
|
'number': function (n) {
|
|
var t, x;
|
|
|
|
if (isInteger(n)) {
|
|
if (n <= 0) {
|
|
return isFinite(n) ? Infinity : NaN;
|
|
}
|
|
|
|
if (n > 171) {
|
|
return Infinity; // Will overflow
|
|
}
|
|
|
|
var value = n - 2;
|
|
var res = n - 1;
|
|
while (value > 1) {
|
|
res *= value;
|
|
value--;
|
|
}
|
|
|
|
if (res == 0) {
|
|
res = 1; // 0! is per definition 1
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
if (n < 0.5) {
|
|
return Math.PI / (Math.sin(Math.PI * n) * gamma(1-n));
|
|
}
|
|
|
|
if (n >= 171.35) {
|
|
return Infinity; // will overflow
|
|
}
|
|
|
|
if (n > 85.0) { // Extended Stirling Approx
|
|
var twoN = n*n;
|
|
var threeN = twoN*n;
|
|
var fourN = threeN*n;
|
|
var fiveN = fourN*n;
|
|
return Math.sqrt(2*Math.PI/n) * Math.pow((n/Math.E), n) *
|
|
(1 + 1/(12*n) + 1/(288*twoN) - 139/(51840*threeN) -
|
|
571/(2488320*fourN) + 163879/(209018880*fiveN) +
|
|
5246819/(75246796800*fiveN*n));
|
|
}
|
|
|
|
--n;
|
|
x = p[0];
|
|
for (var i = 1; i < p.length; ++i) {
|
|
x += p[i] / (n+i);
|
|
}
|
|
|
|
t = n + g + 0.5;
|
|
return Math.sqrt(2*Math.PI) * Math.pow(t, n+0.5) * Math.exp(-t) * x;
|
|
},
|
|
|
|
'Complex': function (n) {
|
|
var t, x;
|
|
|
|
if (n.im == 0) {
|
|
return gamma(n.re);
|
|
}
|
|
|
|
n = new type.Complex(n.re - 1, n.im);
|
|
x = new type.Complex(p[0], 0);
|
|
for (var i = 1; i < p.length; ++i) {
|
|
var real = n.re + i; // x += p[i]/(n+i)
|
|
var den = real*real + n.im*n.im;
|
|
if (den != 0) {
|
|
x.re += p[i] * real / den;
|
|
x.im += -(p[i] * n.im) / den;
|
|
} else {
|
|
x.re = p[i] < 0
|
|
? -Infinity
|
|
: Infinity;
|
|
}
|
|
}
|
|
|
|
t = new type.Complex(n.re + g + 0.5, n.im);
|
|
var twoPiSqrt = Math.sqrt(2*Math.PI);
|
|
|
|
n.re += 0.5;
|
|
var result = pow(t, n);
|
|
if (result.im == 0) { // sqrt(2*PI)*result
|
|
result.re *= twoPiSqrt;
|
|
} else if (result.re == 0) {
|
|
result.im *= twoPiSqrt;
|
|
} else {
|
|
result.re *= twoPiSqrt;
|
|
result.im *= twoPiSqrt;
|
|
}
|
|
|
|
var r = Math.exp(-t.re); // exp(-t)
|
|
t.re = r * Math.cos(-t.im);
|
|
t.im = r * Math.sin(-t.im);
|
|
|
|
return multiply(multiply(result, t), x);
|
|
},
|
|
|
|
'BigNumber': function (n) {
|
|
if (n.isInteger()) {
|
|
return (n.isNegative() || n.isZero())
|
|
? new type.BigNumber(Infinity)
|
|
: bigFactorial(n.minus(1));
|
|
}
|
|
|
|
if (!n.isFinite()) {
|
|
return new type.BigNumber(n.isNegative() ? NaN : Infinity);
|
|
}
|
|
|
|
throw new Error('Integer BigNumber expected');
|
|
},
|
|
|
|
'Array | Matrix': function (n) {
|
|
return deepMap(n, gamma);
|
|
}
|
|
});
|
|
|
|
/**
|
|
* Calculate factorial for a BigNumber
|
|
* @param {BigNumber} n
|
|
* @returns {BigNumber} Returns the factorial of n
|
|
*/
|
|
function bigFactorial(n) {
|
|
if (n.isZero()) {
|
|
return new type.BigNumber(1); // 0! is per definition 1
|
|
}
|
|
|
|
var precision = config.precision + (Math.log(n.toNumber()) | 0);
|
|
var Big = type.BigNumber.clone({precision: precision});
|
|
|
|
var res = new Big(n);
|
|
var value = n.toNumber() - 1; // number
|
|
while (value > 1) {
|
|
res = res.times(value);
|
|
value--;
|
|
}
|
|
|
|
return new type.BigNumber(res.toPrecision(type.BigNumber.precision));
|
|
}
|
|
|
|
gamma.toTex = {1: '\\Gamma\\left(${args[0]}\\right)'};
|
|
|
|
return gamma;
|
|
}
|
|
|
|
// TODO: comment on the variables g and p
|
|
|
|
var g = 4.7421875;
|
|
|
|
var p = [
|
|
0.99999999999999709182,
|
|
57.156235665862923517,
|
|
-59.597960355475491248,
|
|
14.136097974741747174,
|
|
-0.49191381609762019978,
|
|
0.33994649984811888699e-4,
|
|
0.46523628927048575665e-4,
|
|
-0.98374475304879564677e-4,
|
|
0.15808870322491248884e-3,
|
|
-0.21026444172410488319e-3,
|
|
0.21743961811521264320e-3,
|
|
-0.16431810653676389022e-3,
|
|
0.84418223983852743293e-4,
|
|
-0.26190838401581408670e-4,
|
|
0.36899182659531622704e-5
|
|
];
|
|
|
|
exports.name = 'gamma';
|
|
exports.factory = factory;
|