185 lines
4.6 KiB
JavaScript

'use strict';
function factory (type, config, load, typed) {
var matrix = load(require('../../type/matrix/function/matrix'));
var latex = require('../../utils/latex');
var algorithm02 = load(require('../../type/matrix/utils/algorithm02'));
var algorithm03 = load(require('../../type/matrix/utils/algorithm03'));
var algorithm05 = load(require('../../type/matrix/utils/algorithm05'));
var algorithm11 = load(require('../../type/matrix/utils/algorithm11'));
var algorithm12 = load(require('../../type/matrix/utils/algorithm12'));
var algorithm13 = load(require('../../type/matrix/utils/algorithm13'));
var algorithm14 = load(require('../../type/matrix/utils/algorithm14'));
/**
* Calculates the modulus, the remainder of an integer division.
*
* For matrices, the function is evaluated element wise.
*
* The modulus is defined as:
*
* x - y * floor(x / y)
*
* See http://en.wikipedia.org/wiki/Modulo_operation.
*
* Syntax:
*
* math.mod(x, y)
*
* Examples:
*
* math.mod(8, 3); // returns 2
* math.mod(11, 2); // returns 1
*
* function isOdd(x) {
* return math.mod(x, 2) != 0;
* }
*
* isOdd(2); // returns false
* isOdd(3); // returns true
*
* See also:
*
* divide
*
* @param {number | BigNumber | Fraction | Array | Matrix} x Dividend
* @param {number | BigNumber | Fraction | Array | Matrix} y Divisor
* @return {number | BigNumber | Fraction | Array | Matrix} Returns the remainder of `x` divided by `y`.
*/
var mod = typed('mod', {
'number, number': _mod,
'BigNumber, BigNumber': function (x, y) {
return y.isZero() ? x : x.mod(y);
},
'Fraction, Fraction': function (x, y) {
return x.mod(y);
},
'Matrix, Matrix': function (x, y) {
// result
var c;
// process matrix storage
switch (x.storage()) {
case 'sparse':
switch (y.storage()) {
case 'sparse':
// mod(sparse, sparse)
c = algorithm05(x, y, mod, false);
break;
default:
// mod(sparse, dense)
c = algorithm02(y, x, mod, true);
break;
}
break;
default:
switch (y.storage()) {
case 'sparse':
// mod(dense, sparse)
c = algorithm03(x, y, mod, false);
break;
default:
// mod(dense, dense)
c = algorithm13(x, y, mod);
break;
}
break;
}
return c;
},
'Array, Array': function (x, y) {
// use matrix implementation
return mod(matrix(x), matrix(y)).valueOf();
},
'Array, Matrix': function (x, y) {
// use matrix implementation
return mod(matrix(x), y);
},
'Matrix, Array': function (x, y) {
// use matrix implementation
return mod(x, matrix(y));
},
'Matrix, any': function (x, y) {
// result
var c;
// check storage format
switch (x.storage()) {
case 'sparse':
c = algorithm11(x, y, mod, false);
break;
default:
c = algorithm14(x, y, mod, false);
break;
}
return c;
},
'any, Matrix': function (x, y) {
// result
var c;
// check storage format
switch (y.storage()) {
case 'sparse':
c = algorithm12(y, x, mod, true);
break;
default:
c = algorithm14(y, x, mod, true);
break;
}
return c;
},
'Array, any': function (x, y) {
// use matrix implementation
return algorithm14(matrix(x), y, mod, false).valueOf();
},
'any, Array': function (x, y) {
// use matrix implementation
return algorithm14(matrix(y), x, mod, true).valueOf();
}
});
mod.toTex = {
2: '\\left(${args[0]}' + latex.operators['mod'] + '${args[1]}\\right)'
};
return mod;
/**
* Calculate the modulus of two numbers
* @param {number} x
* @param {number} y
* @returns {number} res
* @private
*/
function _mod(x, y) {
if (y > 0) {
// We don't use JavaScript's % operator here as this doesn't work
// correctly for x < 0 and x == 0
// see http://en.wikipedia.org/wiki/Modulo_operation
return x - y * Math.floor(x / y);
}
else if (y === 0) {
return x;
}
else { // y < 0
// TODO: implement mod for a negative divisor
throw new Error('Cannot calculate mod for a negative divisor');
}
}
}
exports.name = 'mod';
exports.factory = factory;