mathjs/lib/function/algebra/simplify/simplifyConstant.js
2017-05-09 13:20:32 +09:30

249 lines
6.8 KiB
JavaScript

'use strict';
var digits = require('./../../../utils/number').digits;
// TODO this could be improved by simplifying seperated constants under associative and commutative operators
function factory(type, config, load, typed, math) {
var util = load(require('./util'));
var isCommutative = util.isCommutative;
var isAssociative = util.isAssociative;
var allChildren = util.allChildren;
var createMakeNodeFunction = util.createMakeNodeFunction;
var ConstantNode = math.expression.node.ConstantNode;
var OperatorNode = math.expression.node.OperatorNode;
function simplifyConstant(expr) {
var res = foldFraction(expr);
return res.isNode ? res : _toNode(res);
}
function _eval(fnname, args) {
try {
return _toNumber(math[fnname].apply(null, args));
}
catch (ignore) {
// sometimes the implicit type conversion causes the evaluation to fail, so we'll try again after removing Fractions
args = args.map(function(x){
if (x.isFraction) {
return x.valueOf();
}
return x;
});
return _toNumber(math[fnname].apply(null, args));
}
}
var _toNode = typed({
'Fraction': _fractionToNode,
'number': function(n) {
if (n < 0) {
return unaryMinusNode(new ConstantNode(-n));
}
return new ConstantNode(n);
},
'BigNumber': function(n) {
if (n < 0) {
return unaryMinusNode(new ConstantNode(n.negated().toString(), 'number'));
}
return new ConstantNode(n.toString(), 'number');
},
'Complex': function(s) {
throw 'Cannot convert Complex number to Node';
}
});
// convert a number to a fraction only if it can be expressed exactly
function _exactFraction(n) {
if (isFinite(n)) {
var f = math.fraction(n);
if (f.valueOf() === n) {
return f;
}
}
return n;
}
// Convert numbers to a preferred number type in preference order: Fraction, number, Complex
// BigNumbers are left alone
var _toNumber = typed({
'string': function(s) {
if (config.number === 'BigNumber') {
return math.bignumber(s);
}
else if (config.number === 'Fraction') {
return math.fraction(s);
}
else {
return _exactFraction(parseFloat(s));
}
},
'Fraction': function(s) { return s; },
'BigNumber': function(s) { return s; },
'number': function(s) {
return _exactFraction(s);
},
'Complex': function(s) {
if (s.im !== 0) {
return s;
}
return _exactFraction(s.re);
},
});
function unaryMinusNode(n) {
return new OperatorNode('-', 'unaryMinus', [n]);
}
function _fractionToNode(f) {
var n;
var vn = f.s*f.n;
if (vn < 0) {
n = new OperatorNode('-', 'unaryMinus', [new ConstantNode(-vn)])
}
else {
n = new ConstantNode(vn);
}
if (f.d === 1) {
return n;
}
return new OperatorNode('/', 'divide', [n, new ConstantNode(f.d)]);
}
/*
* Create a binary tree from a list of Fractions and Nodes.
* Tries to fold Fractions by evaluating them until the first Node in the list is hit, so
* `args` should be sorted to have the Fractions at the start (if the operator is commutative).
* @param args - list of Fractions and Nodes
* @param fn - evaluator for the binary operation evaluator that accepts two Fractions
* @param makeNode - creates a binary OperatorNode/FunctionNode from a list of child Nodes
* if args.length is 1, returns args[0]
* @return - Either a Node representing a binary expression or Fraction
*/
function foldOp(fn, args, makeNode) {
return args.reduce(function(a, b) {
if (!a.isNode && !b.isNode) {
try {
return _eval(fn, [a,b]);
}
catch (ignoreandcontinue) {}
a = _toNode(a);
b = _toNode(b);
}
else if (!a.isNode) {
a = _toNode(a);
}
else if (!b.isNode) {
b = _toNode(b);
}
return makeNode([a, b]);
});
}
// destroys the original node and returns a folded one
function foldFraction(node) {
switch(node.type) {
case 'SymbolNode':
return node;
case 'ConstantNode':
if (node.valueType === 'number') {
return _toNumber(node.value);
}
return node;
case 'FunctionNode':
if (math[node.name] && math[node.name].rawArgs) {
return node;
}
/* falls through */
case 'OperatorNode':
var fn = node.fn.toString();
var args;
var res;
var makeNode = createMakeNodeFunction(node);
if (node.args.length === 1) {
args = [foldFraction(node.args[0])];
if (!args[0].isNode) {
res = _eval(fn, args);
}
else {
res = makeNode(args);
}
}
else if (isAssociative(node)) {
args = allChildren(node);
args = args.map(foldFraction);
if (isCommutative(fn)) {
// commutative binary operator
var consts = [], vars = [];
for (var i=0; i < args.length; i++) {
if (!args[i].isNode) {
consts.push(args[i]);
}
else {
vars.push(args[i]);
}
}
if (consts.length > 1) {
res = foldOp(fn, consts, makeNode);
vars.unshift(res);
res = foldOp(fn, vars, makeNode);
}
else {
// we won't change the children order since it's not neccessary
res = foldOp(fn, args, makeNode);
}
}
else {
// non-commutative binary operator
res = foldOp(fn, args, makeNode);
}
}
else {
// non-associative binary operator
args = node.args.map(foldFraction);
res = foldOp(fn, args, makeNode);
}
return res;
case 'ParenthesisNode':
// remove the uneccessary parenthesis
return foldFraction(node.content);
case 'AccessorNode':
/* falls through */
case 'ArrayNode':
/* falls through */
case 'AssignmentNode':
/* falls through */
case 'BlockNode':
/* falls through */
case 'FunctionAssignmentNode':
/* falls through */
case 'IndexNode':
/* falls through */
case 'ObjectNode':
/* falls through */
case 'RangeNode':
/* falls through */
case 'UpdateNode':
/* falls through */
case 'ConditionalNode':
/* falls through */
default:
throw 'Unimplemented node type in simplifyConstant: '+node.type;
}
}
return simplifyConstant;
}
exports.math = true;
exports.name = 'simplifyConstant';
exports.path = 'algebra.simplify';
exports.factory = factory;