mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
153 lines
6.0 KiB
HTML
153 lines
6.0 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<title>math.js | rocket trajectory optimization</title>
|
|
|
|
<script src="../../dist/math.js"></script>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.5.0/Chart.min.js"></script>
|
|
|
|
<style>
|
|
body {
|
|
font-family: sans-serif;
|
|
}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<h1>Rocket trajectory optimization</h1>
|
|
<p>
|
|
This example simulates the ascent stage of the Apollo Lunar Module modeled using a system of ordinary differential equations.
|
|
</p>
|
|
|
|
<canvas id=canvas1 width=1600 height=400></canvas>
|
|
<canvas id=canvas2 width=800 height=400></canvas>
|
|
|
|
<script>
|
|
|
|
function ndsolve(f, x0, dt, tmax) {
|
|
var n = f.size()[0]; // Number of variables
|
|
var x = x0.clone(); // Current values of variables
|
|
var dxdt = []; // Temporary variable to hold time-derivatives
|
|
var result = []; // Contains entire solution
|
|
|
|
var nsteps = math.divide(tmax, dt); // Number of time steps
|
|
for(var i=0; i<nsteps; i++) {
|
|
// Compute derivatives
|
|
for(var j=0; j<n; j++) {
|
|
dxdt[j] = f.get([j]).apply(null, x.toArray());
|
|
}
|
|
// Euler method to compute next time step
|
|
for(var j=0; j<n; j++) {
|
|
x.set([j], math.add(x.get([j]), math.multiply(dxdt[j], dt)));
|
|
}
|
|
result.push(x.clone());
|
|
}
|
|
|
|
return math.matrix(result);
|
|
}
|
|
|
|
// Import the numerical ODE solver
|
|
math.import({ndsolve:ndsolve});
|
|
|
|
// Create a math.js context for our simulation. Everything else occurs in the context of the expression parser!
|
|
|
|
var sim = math.parser();
|
|
|
|
sim.eval("G = 6.67408e-11 m^3 kg^-1 s^-2"); // Gravitational constant
|
|
sim.eval("mbody = 5.972e24 kg"); // Mass of Earth
|
|
sim.eval("mu = G * mbody");
|
|
sim.eval("dt = 1.0 s"); // Simulation timestep
|
|
sim.eval("tfinal = 162 s"); // Simulation duration
|
|
sim.eval("T = 1710000 lbf * 0.9"); // Engine thrust
|
|
sim.eval("g0 = 9.80665 m/s^2"); // Standard gravity: used for calculating prop consumption (dmdt)
|
|
sim.eval("isp = 290 s"); // Specific impulse
|
|
sim.eval("gamma0 = 89.99883 deg"); // Initial pitch angle (90 deg is vertical)
|
|
sim.eval("r0 = 6378.1370 km"); // Equatorial radius of Earth
|
|
sim.eval("v0 = 10 m/s"); // Initial velocity (must be non-zero because ODE is ill-conditioned)
|
|
sim.eval("phi0 = 0 deg"); // Initial orbital reference angle
|
|
sim.eval("m0 = 1207920 lbm + 30000 lbm"); // Initial mass of rocket and fuel
|
|
|
|
// Define the equations of motion. It is important to maintain the same argument order for each of these functions.
|
|
sim.eval("drdt(r, v, m, phi, gamma) = v sin(gamma)");
|
|
sim.eval("dvdt(r, v, m, phi, gamma) = -mu / r^2 sin(gamma) + T / m");
|
|
sim.eval("dmdt(r, v, m, phi, gamma) = -T/g0/isp");
|
|
sim.eval("dphidt(r, v, m, phi, gamma) = v/r cos(gamma) * rad");
|
|
sim.eval("dgammadt(r, v, m, phi, gamma) = (1/r * (v - mu / (r v)) * cos(gamma)) * rad");
|
|
|
|
// Again, remember to maintain the same variable order in the call to ndsolve.
|
|
sim.eval("result_stage1 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt], [r0, v0, m0, phi0, gamma0], dt, tfinal)");
|
|
|
|
// Reset initial conditions for interstage flight
|
|
sim.eval("T = 0 lbf");
|
|
sim.eval("tfinal = 12 s");
|
|
sim.eval("x = flatten(result_stage1[result_stage1.size()[1],:])");
|
|
sim.eval("result_interstage = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt], x, dt, tfinal)");
|
|
|
|
console.log(sim.eval("result_interstage[result_interstage.size()[1],3]").toString());
|
|
|
|
// Reset initial conditions for stage 2 flight
|
|
sim.eval("T = 210000 lbf");
|
|
sim.eval("isp = 348 s");
|
|
sim.eval("tfinal = 397 s");
|
|
sim.eval("x = flatten(result_interstage[result_interstage.size()[1],:])");
|
|
sim.eval("x[3] = 273600 lbm"); // Lighten the rocket a bit since we discarded the first stage
|
|
sim.eval("result_stage2 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt], x, dt, tfinal)");
|
|
|
|
// Reset initial conditions for unpowered flight
|
|
sim.eval("T = 0 lbf");
|
|
sim.eval("tfinal = 60 s");
|
|
sim.eval("x = flatten(result_stage2[result_stage2.size()[1],:])");
|
|
sim.eval("result_unpowered = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt], x, dt, tfinal)");
|
|
|
|
|
|
|
|
// Extract the useful information from the results so it can be plotted
|
|
var data_stage1 = sim.eval("concat( ( result_stage1[:,4]' - phi0) * r0 / rad / km, ( result_stage1[:,1]' - r0) / km, 1 )' ").toArray().map(function(e) { return {x: e[0], y: e[1]}; });
|
|
var data_interstage = sim.eval("concat( (result_interstage[:,4]' - phi0) * r0 / rad / km, (result_interstage[:,1]' - r0) / km, 1 )' ").toArray().map(function(e) { return {x: e[0], y: e[1]}; });
|
|
var data_stage2 = sim.eval("concat( ( result_stage2[:,4]' - phi0) * r0 / rad / km, ( result_stage2[:,1]' - r0) / km, 1 )' ").toArray().map(function(e) { return {x: e[0], y: e[1]}; });
|
|
var data_unpowered = sim.eval("concat( ( result_unpowered[:,4]' - phi0) * r0 / rad / km, ( result_unpowered[:,1]' - r0) / km, 1 )' ").toArray().map(function(e) { return {x: e[0], y: e[1]}; });
|
|
|
|
|
|
var chart = new Chart(document.getElementById('canvas1'), {
|
|
type: 'line',
|
|
data: {
|
|
datasets: [{
|
|
label: "Stage 1",
|
|
data: data_stage1,
|
|
fill: false,
|
|
borderColor: "red",
|
|
pointRadius: 0
|
|
}, {
|
|
label: "Interstage",
|
|
data: data_interstage,
|
|
fill: false,
|
|
borderColor: "green",
|
|
pointRadius: 0
|
|
}, {
|
|
label: "Stage 2",
|
|
data: data_stage2,
|
|
fill: false,
|
|
borderColor: "orange",
|
|
pointRadius: 0
|
|
}, {
|
|
label: "Unpowered",
|
|
data: data_unpowered,
|
|
fill: false,
|
|
borderColor: "blue",
|
|
pointRadius: 0
|
|
}]
|
|
},
|
|
options: {
|
|
scales: {
|
|
xAxes: [{
|
|
type: 'linear',
|
|
position: 'bottom'
|
|
}]
|
|
}
|
|
}
|
|
|
|
});
|
|
|
|
</script>
|
|
</body>
|
|
</html>
|