mathjs/src/function/probability/combinations.js

73 lines
2.0 KiB
JavaScript

import { factory } from '../../utils/factory'
import { combinationsNumber } from '../../plain/number/combinations'
const name = 'combinations'
const dependencies = ['typed']
export const createCombinations = /* #__PURE__ */ factory(name, dependencies, ({ typed }) => {
/**
* Compute the number of ways of picking `k` unordered outcomes from `n`
* possibilities.
*
* Combinations only takes integer arguments.
* The following condition must be enforced: k <= n.
*
* Syntax:
*
* math.combinations(n, k)
*
* Examples:
*
* math.combinations(7, 5) // returns 21
*
* See also:
*
* combinationsWithRep, permutations, factorial
*
* @param {number | BigNumber} n Total number of objects in the set
* @param {number | BigNumber} k Number of objects in the subset
* @return {number | BigNumber} Number of possible combinations.
*/
return typed(name, {
'number, number': combinationsNumber,
'BigNumber, BigNumber': function (n, k) {
const BigNumber = n.constructor
let result, i
const nMinusk = n.minus(k)
const one = new BigNumber(1)
if (!isPositiveInteger(n) || !isPositiveInteger(k)) {
throw new TypeError('Positive integer value expected in function combinations')
}
if (k.gt(n)) {
throw new TypeError('k must be less than n in function combinations')
}
result = one
if (k.lt(nMinusk)) {
for (i = one; i.lte(nMinusk); i = i.plus(one)) {
result = result.times(k.plus(i)).dividedBy(i)
}
} else {
for (i = one; i.lte(k); i = i.plus(one)) {
result = result.times(nMinusk.plus(i)).dividedBy(i)
}
}
return result
}
// TODO: implement support for collection in combinations
})
})
/**
* Test whether BigNumber n is a positive integer
* @param {BigNumber} n
* @returns {boolean} isPositiveInteger
*/
function isPositiveInteger (n) {
return n.isInteger() && n.gte(0)
}