125 lines
3.2 KiB
JavaScript

import { deepMap } from '../../utils/collection'
import { factory } from '../../utils/factory'
import { gammaG, gammaNumber, gammaP } from '../../plain/number'
const name = 'gamma'
const dependencies = ['typed', 'config', 'multiplyScalar', 'pow', 'BigNumber', 'Complex']
export const createGamma = /* #__PURE__ */ factory(name, dependencies, ({ typed, config, multiplyScalar, pow, BigNumber, Complex }) => {
/**
* Compute the gamma function of a value using Lanczos approximation for
* small values, and an extended Stirling approximation for large values.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.gamma(n)
*
* Examples:
*
* math.gamma(5) // returns 24
* math.gamma(-0.5) // returns -3.5449077018110335
* math.gamma(math.i) // returns -0.15494982830180973 - 0.49801566811835596i
*
* See also:
*
* combinations, factorial, permutations
*
* @param {number | Array | Matrix} n A real or complex number
* @return {number | Array | Matrix} The gamma of `n`
*/
const gamma = typed(name, {
'number': gammaNumber,
'Complex': function (n) {
let t, x
if (n.im === 0) {
return gamma(n.re)
}
n = new Complex(n.re - 1, n.im)
x = new Complex(gammaP[0], 0)
for (let i = 1; i < gammaP.length; ++i) {
const real = n.re + i // x += p[i]/(n+i)
const den = real * real + n.im * n.im
if (den !== 0) {
x.re += gammaP[i] * real / den
x.im += -(gammaP[i] * n.im) / den
} else {
x.re = gammaP[i] < 0
? -Infinity
: Infinity
}
}
t = new Complex(n.re + gammaG + 0.5, n.im)
const twoPiSqrt = Math.sqrt(2 * Math.PI)
n.re += 0.5
const result = pow(t, n)
if (result.im === 0) { // sqrt(2*PI)*result
result.re *= twoPiSqrt
} else if (result.re === 0) {
result.im *= twoPiSqrt
} else {
result.re *= twoPiSqrt
result.im *= twoPiSqrt
}
const r = Math.exp(-t.re) // exp(-t)
t.re = r * Math.cos(-t.im)
t.im = r * Math.sin(-t.im)
return multiplyScalar(multiplyScalar(result, t), x)
},
'BigNumber': function (n) {
if (n.isInteger()) {
return (n.isNegative() || n.isZero())
? new BigNumber(Infinity)
: bigFactorial(n.minus(1))
}
if (!n.isFinite()) {
return new BigNumber(n.isNegative() ? NaN : Infinity)
}
throw new Error('Integer BigNumber expected')
},
'Array | Matrix': function (n) {
return deepMap(n, gamma)
}
})
/**
* Calculate factorial for a BigNumber
* @param {BigNumber} n
* @returns {BigNumber} Returns the factorial of n
*/
function bigFactorial (n) {
if (n.isZero()) {
return new BigNumber(1) // 0! is per definition 1
}
const precision = config.precision + (Math.log(n.toNumber()) | 0)
const Big = BigNumber.clone({ precision: precision })
let res = new Big(n)
let value = n.toNumber() - 1 // number
while (value > 1) {
res = res.times(value)
value--
}
return new BigNumber(res.toPrecision(BigNumber.precision))
}
return gamma
})