Jos de Jong cd99ca5ae7 Merge pull request #289 from BigFav/bigSin
Now numbers from BigNumber trig calls use the default constructor rather...
2015-02-26 21:02:09 +00:00

87 lines
2.1 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
collection = require('../../type/collection'),
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isCollection = collection.isCollection,
bigArcSin = util.bignumber.arcsin_arccsc;
/**
* Calculate the inverse sine of a value.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.asin(x)
*
* Examples:
*
* math.asin(0.5); // returns Number 0.5235987755982989
* math.asin(math.sin(1.5)); // returns Number ~1.5
*
* math.asin(2); // returns Complex 1.5707963267948966 -1.3169578969248166 i
*
* See also:
*
* sin, atan, acos
*
* @param {Number | BigNumber | Boolean | Complex | Array | Matrix | null} x Function input
* @return {Number | BigNumber | Complex | Array | Matrix} The arc sine of x
*/
math.asin = function asin(x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('asin', arguments.length, 1);
}
if (isNumber(x)) {
if (x >= -1 && x <= 1) {
return Math.asin(x);
}
else {
return asin(new Complex(x, 0));
}
}
if (isComplex(x)) {
// asin(z) = -i*log(iz + sqrt(1-z^2))
var re = x.re;
var im = x.im;
var temp1 = new Complex(
im * im - re * re + 1.0,
-2.0 * re * im
);
var temp2 = math.sqrt(temp1);
var temp3 = new Complex(
temp2.re - im,
temp2.im + re
);
var temp4 = math.log(temp3);
return new Complex(temp4.im, -temp4.re);
}
if (isCollection(x)) {
return collection.deepMap(x, asin);
}
if (isBoolean(x) || x === null) {
return Math.asin(x);
}
if (x instanceof BigNumber) {
return bigArcSin(x, BigNumber, false);
}
throw new math.error.UnsupportedTypeError('asin', math['typeof'](x));
};
};