mathjs/lib/function/probability/permutations.js

108 lines
2.9 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
isNumber = util.number.isNumber,
isInteger = util.number.isInteger;
/**
* Compute the number of ways of obtaining an ordered subset of `k` elements
* from a set of `n` elements.
*
* Permutations only takes integer arguments.
* The following condition must be enforced: k <= n.
*
* Syntax:
*
* math.permutations(n)
* math.permutations(n, k)
*
* Examples:
*
* math.permutations(5); // 120
* math.permutations(5, 3); // 60
*
* See also:
*
* combinations, factorial
*
* @param {Number | BigNumber} n The number of objects in total
* @param {Number | BigNumber} k The number of objects in the subset
* @return {Number | BigNumber} The number of permutations
*/
math.permutations = function permutations (n, k) {
var result, i;
var arity = arguments.length;
if (arity > 2) {
throw new math.error.ArgumentsError('permutations', arguments.length, 2);
}
if (isNumber(n)) {
if (!isInteger(n) || n < 0) {
throw new TypeError('Positive integer value expected in function permutations');
}
// Permute n objects
if (arity == 1) {
return math.factorial(n);
}
// Permute n objects, k at a time
if (arity == 2) {
if (isNumber(k)) {
if (!isInteger(k) || k < 0) {
throw new TypeError('Positive integer value expected in function permutations');
}
if (k > n) {
throw new TypeError('second argument k must be less than or equal to first argument n');
}
result = 1;
for (i = n - k + 1; i <= n; i++) {
result = result * i;
}
return result;
}
}
}
if (n instanceof BigNumber) {
if (k === undefined && isPositiveInteger(n)) {
return math.factorial(n);
}
// make sure k is a BigNumber as well
// not all numbers can be converted to BigNumber
k = BigNumber.convert(k);
if (!(k instanceof BigNumber) || !isPositiveInteger(n) || !isPositiveInteger(k)) {
throw new TypeError('Positive integer value expected in function permutations');
}
if (k.gt(n)) {
throw new TypeError('second argument k must be less than or equal to first argument n');
}
result = new BigNumber(1);
for (i = n.minus(k).plus(1); i.lte(n); i = i.plus(1)) {
result = result.times(i);
}
return result;
}
throw new math.error.UnsupportedTypeError('permutations', math['typeof'](n));
};
/**
* Test whether BigNumber n is a positive integer
* @param {BigNumber} n
* @returns {boolean} isPositiveInteger
*/
var isPositiveInteger = function(n) {
return n.isInteger() && n.gte(0);
};
};