2018-11-08 17:11:52 +01:00

131 lines
3.9 KiB
JavaScript

'use strict'
import { factory } from '../../utils/factory'
import { createAlgorithm02 } from '../../type/matrix/utils/algorithm02'
import { createAlgorithm03 } from '../../type/matrix/utils/algorithm03'
import { createAlgorithm09 } from '../../type/matrix/utils/algorithm09'
import { createAlgorithm11 } from '../../type/matrix/utils/algorithm11'
import { createAlgorithm12 } from '../../type/matrix/utils/algorithm12'
import { createAlgorithm13 } from '../../type/matrix/utils/algorithm13'
import { createAlgorithm14 } from '../../type/matrix/utils/algorithm14'
const name = 'atan2'
const dependencies = [
'typed',
'matrix',
'equalScalar',
'type.BigNumber',
'type.DenseMatrix'
]
export const createAtan2 = factory(name, dependencies, ({ typed, matrix, equalScalar, type: { BigNumber, DenseMatrix } }) => {
const algorithm02 = createAlgorithm02({ typed, equalScalar })
const algorithm03 = createAlgorithm03({ typed })
const algorithm09 = createAlgorithm09({ typed, equalScalar })
const algorithm11 = createAlgorithm11({ typed, equalScalar })
const algorithm12 = createAlgorithm12({ typed, type: { DenseMatrix } })
const algorithm13 = createAlgorithm13({ typed })
const algorithm14 = createAlgorithm14({ typed })
/**
* Calculate the inverse tangent function with two arguments, y/x.
* By providing two arguments, the right quadrant of the computed angle can be
* determined.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.atan2(y, x)
*
* Examples:
*
* math.atan2(2, 2) / math.pi // returns number 0.25
*
* const angle = math.unit(60, 'deg') // returns Unit 60 deg
* const x = math.cos(angle)
* const y = math.sin(angle)
*
* math.atan(2) // returns Complex 1.5707963267948966 -1.3169578969248166 i
*
* See also:
*
* tan, atan, sin, cos
*
* @param {number | Array | Matrix} y Second dimension
* @param {number | Array | Matrix} x First dimension
* @return {number | Array | Matrix} Four-quadrant inverse tangent
*/
const atan2 = typed(name, {
'number, number': Math.atan2,
// Complex numbers doesn't seem to have a reasonable implementation of
// atan2(). Even Matlab removed the support, after they only calculated
// the atan only on base of the real part of the numbers and ignored the imaginary.
'BigNumber, BigNumber': function (y, x) {
return BigNumber.atan2(y, x)
},
'SparseMatrix, SparseMatrix': function (x, y) {
return algorithm09(x, y, atan2, false)
},
'SparseMatrix, DenseMatrix': function (x, y) {
// mind the order of y and x!
return algorithm02(y, x, atan2, true)
},
'DenseMatrix, SparseMatrix': function (x, y) {
return algorithm03(x, y, atan2, false)
},
'DenseMatrix, DenseMatrix': function (x, y) {
return algorithm13(x, y, atan2)
},
'Array, Array': function (x, y) {
return atan2(matrix(x), matrix(y)).valueOf()
},
'Array, Matrix': function (x, y) {
return atan2(matrix(x), y)
},
'Matrix, Array': function (x, y) {
return atan2(x, matrix(y))
},
'SparseMatrix, number | BigNumber': function (x, y) {
return algorithm11(x, y, atan2, false)
},
'DenseMatrix, number | BigNumber': function (x, y) {
return algorithm14(x, y, atan2, false)
},
'number | BigNumber, SparseMatrix': function (x, y) {
// mind the order of y and x
return algorithm12(y, x, atan2, true)
},
'number | BigNumber, DenseMatrix': function (x, y) {
// mind the order of y and x
return algorithm14(y, x, atan2, true)
},
'Array, number | BigNumber': function (x, y) {
return algorithm14(matrix(x), y, atan2, false).valueOf()
},
'number | BigNumber, Array': function (x, y) {
return algorithm14(matrix(y), x, atan2, true).valueOf()
}
})
atan2.toTex = { 2: `\\mathrm{atan2}\\left(\${args}\\right)` }
return atan2
})