85 lines
2.5 KiB
JavaScript

import { csCumsum } from './csCumsum'
import { factory } from '../../../utils/factory'
const name = 'csSymperm'
const dependencies = ['conj', 'SparseMatrix']
export const createCsSymperm = /* #__PURE__ */ factory(name, dependencies, ({ conj, SparseMatrix }) => {
/**
* Computes the symmetric permutation of matrix A accessing only
* the upper triangular part of A.
*
* C = P * A * P'
*
* @param {Matrix} a The A matrix
* @param {Array} pinv The inverse of permutation vector
* @param {boolean} values Process matrix values (true)
*
* @return {Matrix} The C matrix, C = P * A * P'
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
return function csSymperm (a, pinv, values) {
// A matrix arrays
const avalues = a._values
const aindex = a._index
const aptr = a._ptr
const asize = a._size
// columns
const n = asize[1]
// C matrix arrays
const cvalues = values && avalues ? [] : null
const cindex = [] // (nz)
const cptr = [] // (n + 1)
// variables
let i, i2, j, j2, p, p0, p1
// create workspace vector
const w = [] // (n)
// count entries in each column of C
for (j = 0; j < n; j++) {
// column j of A is column j2 of C
j2 = pinv ? pinv[j] : j
// loop values in column j
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
// row
i = aindex[p]
// skip lower triangular part of A
if (i > j) { continue }
// row i of A is row i2 of C
i2 = pinv ? pinv[i] : i
// column count of C
w[Math.max(i2, j2)]++
}
}
// compute column pointers of C
csCumsum(cptr, w, n)
// loop columns
for (j = 0; j < n; j++) {
// column j of A is column j2 of C
j2 = pinv ? pinv[j] : j
// loop values in column j
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
// row
i = aindex[p]
// skip lower triangular part of A
if (i > j) { continue }
// row i of A is row i2 of C
i2 = pinv ? pinv[i] : i
// C index for column j2
const q = w[Math.max(i2, j2)]++
// update C index for entry q
cindex[q] = Math.min(i2, j2)
// check we need to process values
if (cvalues) { cvalues[q] = (i2 <= j2) ? avalues[p] : conj(avalues[p]) }
}
}
// return C matrix
return new SparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [n, n]
})
}
})