mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-18 14:59:29 +00:00
816 lines
22 KiB
JavaScript
816 lines
22 KiB
JavaScript
import { isInteger } from './number.js'
|
|
import { isNumber, isBigNumber, isArray, isString } from './is.js'
|
|
import { format } from './string.js'
|
|
import { DimensionError } from '../error/DimensionError.js'
|
|
import { IndexError } from '../error/IndexError.js'
|
|
import { deepStrictEqual } from './object.js'
|
|
|
|
/**
|
|
* Calculate the size of a multi dimensional array.
|
|
* This function checks the size of the first entry, it does not validate
|
|
* whether all dimensions match. (use function `validate` for that)
|
|
* @param {Array} x
|
|
* @Return {Number[]} size
|
|
*/
|
|
export function arraySize (x) {
|
|
const s = []
|
|
|
|
while (Array.isArray(x)) {
|
|
s.push(x.length)
|
|
x = x[0]
|
|
}
|
|
|
|
return s
|
|
}
|
|
|
|
/**
|
|
* Recursively validate whether each element in a multi dimensional array
|
|
* has a size corresponding to the provided size array.
|
|
* @param {Array} array Array to be validated
|
|
* @param {number[]} size Array with the size of each dimension
|
|
* @param {number} dim Current dimension
|
|
* @throws DimensionError
|
|
* @private
|
|
*/
|
|
function _validate (array, size, dim) {
|
|
let i
|
|
const len = array.length
|
|
|
|
if (len !== size[dim]) {
|
|
throw new DimensionError(len, size[dim])
|
|
}
|
|
|
|
if (dim < size.length - 1) {
|
|
// recursively validate each child array
|
|
const dimNext = dim + 1
|
|
for (i = 0; i < len; i++) {
|
|
const child = array[i]
|
|
if (!Array.isArray(child)) {
|
|
throw new DimensionError(size.length - 1, size.length, '<')
|
|
}
|
|
_validate(array[i], size, dimNext)
|
|
}
|
|
} else {
|
|
// last dimension. none of the childs may be an array
|
|
for (i = 0; i < len; i++) {
|
|
if (Array.isArray(array[i])) {
|
|
throw new DimensionError(size.length + 1, size.length, '>')
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Validate whether each element in a multi dimensional array has
|
|
* a size corresponding to the provided size array.
|
|
* @param {Array} array Array to be validated
|
|
* @param {number[]} size Array with the size of each dimension
|
|
* @throws DimensionError
|
|
*/
|
|
export function validate (array, size) {
|
|
const isScalar = (size.length === 0)
|
|
if (isScalar) {
|
|
// scalar
|
|
if (Array.isArray(array)) {
|
|
throw new DimensionError(array.length, 0)
|
|
}
|
|
} else {
|
|
// array
|
|
_validate(array, size, 0)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Validate whether the source of the index matches the size of the Array
|
|
* @param {Array | Matrix} array Array to be validated
|
|
* @param {Index} index Index with the source information to validate
|
|
* @throws DimensionError
|
|
*/
|
|
export function validateIndexSourceSize (value, index) {
|
|
const valueSize = value.isMatrix ? value._size : arraySize(value)
|
|
const sourceSize = index._sourceSize
|
|
// checks if the source size is not null and matches the valueSize
|
|
sourceSize.forEach((sourceDim, i) => {
|
|
if (sourceDim !== null && sourceDim !== valueSize[i]) { throw new DimensionError(sourceDim, valueSize[i]) }
|
|
})
|
|
}
|
|
|
|
/**
|
|
* Test whether index is an integer number with index >= 0 and index < length
|
|
* when length is provided
|
|
* @param {number} index Zero-based index
|
|
* @param {number} [length] Length of the array
|
|
*/
|
|
export function validateIndex (index, length) {
|
|
if (index !== undefined) {
|
|
if (!isNumber(index) || !isInteger(index)) {
|
|
throw new TypeError('Index must be an integer (value: ' + index + ')')
|
|
}
|
|
if (index < 0 || (typeof length === 'number' && index >= length)) {
|
|
throw new IndexError(index, length)
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test if and index has empty values
|
|
* @param {number} index Zero-based index
|
|
*/
|
|
export function isEmptyIndex (index) {
|
|
for (let i = 0; i < index._dimensions.length; ++i) {
|
|
const dimension = index._dimensions[i]
|
|
if (dimension._data && isArray(dimension._data)) {
|
|
if (dimension._size[0] === 0) {
|
|
return true
|
|
}
|
|
} else if (dimension.isRange) {
|
|
if (dimension.start === dimension.end) {
|
|
return true
|
|
}
|
|
} else if (isString(dimension)) {
|
|
if (dimension.length === 0) {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
/**
|
|
* Resize a multi dimensional array. The resized array is returned.
|
|
* @param {Array | number} array Array to be resized
|
|
* @param {number[]} size Array with the size of each dimension
|
|
* @param {*} [defaultValue=0] Value to be filled in in new entries,
|
|
* zero by default. Specify for example `null`,
|
|
* to clearly see entries that are not explicitly
|
|
* set.
|
|
* @return {Array} array The resized array
|
|
*/
|
|
export function resize (array, size, defaultValue) {
|
|
// check the type of the arguments
|
|
if (!Array.isArray(size)) {
|
|
throw new TypeError('Array expected')
|
|
}
|
|
if (size.length === 0) {
|
|
throw new Error('Resizing to scalar is not supported')
|
|
}
|
|
|
|
// check whether size contains positive integers
|
|
size.forEach(function (value) {
|
|
if (!isNumber(value) || !isInteger(value) || value < 0) {
|
|
throw new TypeError('Invalid size, must contain positive integers ' +
|
|
'(size: ' + format(size) + ')')
|
|
}
|
|
})
|
|
|
|
// convert number to an array
|
|
if (isNumber(array) || isBigNumber(array)) {
|
|
array = [array]
|
|
}
|
|
|
|
// recursively resize the array
|
|
const _defaultValue = (defaultValue !== undefined) ? defaultValue : 0
|
|
_resize(array, size, 0, _defaultValue)
|
|
|
|
return array
|
|
}
|
|
|
|
/**
|
|
* Recursively resize a multi dimensional array
|
|
* @param {Array} array Array to be resized
|
|
* @param {number[]} size Array with the size of each dimension
|
|
* @param {number} dim Current dimension
|
|
* @param {*} [defaultValue] Value to be filled in in new entries,
|
|
* undefined by default.
|
|
* @private
|
|
*/
|
|
function _resize (array, size, dim, defaultValue) {
|
|
let i
|
|
let elem
|
|
const oldLen = array.length
|
|
const newLen = size[dim]
|
|
const minLen = Math.min(oldLen, newLen)
|
|
|
|
// apply new length
|
|
array.length = newLen
|
|
|
|
if (dim < size.length - 1) {
|
|
// non-last dimension
|
|
const dimNext = dim + 1
|
|
|
|
// resize existing child arrays
|
|
for (i = 0; i < minLen; i++) {
|
|
// resize child array
|
|
elem = array[i]
|
|
if (!Array.isArray(elem)) {
|
|
elem = [elem] // add a dimension
|
|
array[i] = elem
|
|
}
|
|
_resize(elem, size, dimNext, defaultValue)
|
|
}
|
|
|
|
// create new child arrays
|
|
for (i = minLen; i < newLen; i++) {
|
|
// get child array
|
|
elem = []
|
|
array[i] = elem
|
|
|
|
// resize new child array
|
|
_resize(elem, size, dimNext, defaultValue)
|
|
}
|
|
} else {
|
|
// last dimension
|
|
|
|
// remove dimensions of existing values
|
|
for (i = 0; i < minLen; i++) {
|
|
while (Array.isArray(array[i])) {
|
|
array[i] = array[i][0]
|
|
}
|
|
}
|
|
|
|
// fill new elements with the default value
|
|
for (i = minLen; i < newLen; i++) {
|
|
array[i] = defaultValue
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Re-shape a multi dimensional array to fit the specified dimensions
|
|
* @param {Array} array Array to be reshaped
|
|
* @param {number[]} sizes List of sizes for each dimension
|
|
* @returns {Array} Array whose data has been formatted to fit the
|
|
* specified dimensions
|
|
*
|
|
* @throws {DimensionError} If the product of the new dimension sizes does
|
|
* not equal that of the old ones
|
|
*/
|
|
export function reshape (array, sizes) {
|
|
const flatArray = flatten(array)
|
|
const currentLength = flatArray.length
|
|
|
|
if (!Array.isArray(array) || !Array.isArray(sizes)) {
|
|
throw new TypeError('Array expected')
|
|
}
|
|
|
|
if (sizes.length === 0) {
|
|
throw new DimensionError(0, currentLength, '!=')
|
|
}
|
|
|
|
sizes = processSizesWildcard(sizes, currentLength)
|
|
const newLength = product(sizes)
|
|
if (currentLength !== newLength) {
|
|
throw new DimensionError(
|
|
newLength,
|
|
currentLength,
|
|
'!='
|
|
)
|
|
}
|
|
|
|
try {
|
|
return _reshape(flatArray, sizes)
|
|
} catch (e) {
|
|
if (e instanceof DimensionError) {
|
|
throw new DimensionError(
|
|
newLength,
|
|
currentLength,
|
|
'!='
|
|
)
|
|
}
|
|
throw e
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Replaces the wildcard -1 in the sizes array.
|
|
* @param {number[]} sizes List of sizes for each dimension. At most on wildcard.
|
|
* @param {number} currentLength Number of elements in the array.
|
|
* @throws {Error} If more than one wildcard or unable to replace it.
|
|
* @returns {number[]} The sizes array with wildcard replaced.
|
|
*/
|
|
export function processSizesWildcard (sizes, currentLength) {
|
|
const newLength = product(sizes)
|
|
const processedSizes = sizes.slice()
|
|
const WILDCARD = -1
|
|
const wildCardIndex = sizes.indexOf(WILDCARD)
|
|
|
|
const isMoreThanOneWildcard = sizes.indexOf(WILDCARD, wildCardIndex + 1) >= 0
|
|
if (isMoreThanOneWildcard) {
|
|
throw new Error('More than one wildcard in sizes')
|
|
}
|
|
|
|
const hasWildcard = wildCardIndex >= 0
|
|
const canReplaceWildcard = currentLength % newLength === 0
|
|
|
|
if (hasWildcard) {
|
|
if (canReplaceWildcard) {
|
|
processedSizes[wildCardIndex] = -currentLength / newLength
|
|
} else {
|
|
throw new Error('Could not replace wildcard, since ' + currentLength + ' is no multiple of ' + (-newLength))
|
|
}
|
|
}
|
|
return processedSizes
|
|
}
|
|
|
|
/**
|
|
* Computes the product of all array elements.
|
|
* @param {number[]} array Array of factors
|
|
* @returns {number} Product of all elements
|
|
*/
|
|
function product (array) {
|
|
return array.reduce((prev, curr) => prev * curr, 1)
|
|
}
|
|
|
|
/**
|
|
* Iteratively re-shape a multi dimensional array to fit the specified dimensions
|
|
* @param {Array} array Array to be reshaped
|
|
* @param {number[]} sizes List of sizes for each dimension
|
|
* @returns {Array} Array whose data has been formatted to fit the
|
|
* specified dimensions
|
|
*/
|
|
|
|
function _reshape (array, sizes) {
|
|
// testing if there are enough elements for the requested shape
|
|
let tmpArray = array
|
|
let tmpArray2
|
|
// for each dimensions starting by the last one and ignoring the first one
|
|
for (let sizeIndex = sizes.length - 1; sizeIndex > 0; sizeIndex--) {
|
|
const size = sizes[sizeIndex]
|
|
tmpArray2 = []
|
|
|
|
// aggregate the elements of the current tmpArray in elements of the requested size
|
|
const length = tmpArray.length / size
|
|
for (let i = 0; i < length; i++) {
|
|
tmpArray2.push(tmpArray.slice(i * size, (i + 1) * size))
|
|
}
|
|
// set it as the new tmpArray for the next loop turn or for return
|
|
tmpArray = tmpArray2
|
|
}
|
|
|
|
return tmpArray
|
|
}
|
|
|
|
/**
|
|
* Squeeze a multi dimensional array
|
|
* @param {Array} array
|
|
* @param {Array} [size]
|
|
* @returns {Array} returns the array itself
|
|
*/
|
|
export function squeeze (array, size) {
|
|
const s = size || arraySize(array)
|
|
|
|
// squeeze outer dimensions
|
|
while (Array.isArray(array) && array.length === 1) {
|
|
array = array[0]
|
|
s.shift()
|
|
}
|
|
|
|
// find the first dimension to be squeezed
|
|
let dims = s.length
|
|
while (s[dims - 1] === 1) {
|
|
dims--
|
|
}
|
|
|
|
// squeeze inner dimensions
|
|
if (dims < s.length) {
|
|
array = _squeeze(array, dims, 0)
|
|
s.length = dims
|
|
}
|
|
|
|
return array
|
|
}
|
|
|
|
/**
|
|
* Recursively squeeze a multi dimensional array
|
|
* @param {Array} array
|
|
* @param {number} dims Required number of dimensions
|
|
* @param {number} dim Current dimension
|
|
* @returns {Array | *} Returns the squeezed array
|
|
* @private
|
|
*/
|
|
function _squeeze (array, dims, dim) {
|
|
let i, ii
|
|
|
|
if (dim < dims) {
|
|
const next = dim + 1
|
|
for (i = 0, ii = array.length; i < ii; i++) {
|
|
array[i] = _squeeze(array[i], dims, next)
|
|
}
|
|
} else {
|
|
while (Array.isArray(array)) {
|
|
array = array[0]
|
|
}
|
|
}
|
|
|
|
return array
|
|
}
|
|
|
|
/**
|
|
* Unsqueeze a multi dimensional array: add dimensions when missing
|
|
*
|
|
* Paramter `size` will be mutated to match the new, unqueezed matrix size.
|
|
*
|
|
* @param {Array} array
|
|
* @param {number} dims Desired number of dimensions of the array
|
|
* @param {number} [outer] Number of outer dimensions to be added
|
|
* @param {Array} [size] Current size of array.
|
|
* @returns {Array} returns the array itself
|
|
* @private
|
|
*/
|
|
export function unsqueeze (array, dims, outer, size) {
|
|
const s = size || arraySize(array)
|
|
|
|
// unsqueeze outer dimensions
|
|
if (outer) {
|
|
for (let i = 0; i < outer; i++) {
|
|
array = [array]
|
|
s.unshift(1)
|
|
}
|
|
}
|
|
|
|
// unsqueeze inner dimensions
|
|
array = _unsqueeze(array, dims, 0)
|
|
while (s.length < dims) {
|
|
s.push(1)
|
|
}
|
|
|
|
return array
|
|
}
|
|
|
|
/**
|
|
* Recursively unsqueeze a multi dimensional array
|
|
* @param {Array} array
|
|
* @param {number} dims Required number of dimensions
|
|
* @param {number} dim Current dimension
|
|
* @returns {Array | *} Returns the squeezed array
|
|
* @private
|
|
*/
|
|
function _unsqueeze (array, dims, dim) {
|
|
let i, ii
|
|
|
|
if (Array.isArray(array)) {
|
|
const next = dim + 1
|
|
for (i = 0, ii = array.length; i < ii; i++) {
|
|
array[i] = _unsqueeze(array[i], dims, next)
|
|
}
|
|
} else {
|
|
for (let d = dim; d < dims; d++) {
|
|
array = [array]
|
|
}
|
|
}
|
|
|
|
return array
|
|
}
|
|
/**
|
|
* Flatten a multi dimensional array, put all elements in a one dimensional
|
|
* array
|
|
* @param {Array} array A multi dimensional array
|
|
* @return {Array} The flattened array (1 dimensional)
|
|
*/
|
|
export function flatten (array) {
|
|
if (!Array.isArray(array)) {
|
|
// if not an array, return as is
|
|
return array
|
|
}
|
|
const flat = []
|
|
|
|
array.forEach(function callback (value) {
|
|
if (Array.isArray(value)) {
|
|
value.forEach(callback) // traverse through sub-arrays recursively
|
|
} else {
|
|
flat.push(value)
|
|
}
|
|
})
|
|
|
|
return flat
|
|
}
|
|
|
|
/**
|
|
* A safe map
|
|
* @param {Array} array
|
|
* @param {function} callback
|
|
*/
|
|
export function map (array, callback) {
|
|
return Array.prototype.map.call(array, callback)
|
|
}
|
|
|
|
/**
|
|
* A safe forEach
|
|
* @param {Array} array
|
|
* @param {function} callback
|
|
*/
|
|
export function forEach (array, callback) {
|
|
Array.prototype.forEach.call(array, callback)
|
|
}
|
|
|
|
/**
|
|
* A safe filter
|
|
* @param {Array} array
|
|
* @param {function} callback
|
|
*/
|
|
export function filter (array, callback) {
|
|
if (arraySize(array).length !== 1) {
|
|
throw new Error('Only one dimensional matrices supported')
|
|
}
|
|
|
|
return Array.prototype.filter.call(array, callback)
|
|
}
|
|
|
|
/**
|
|
* Filter values in a callback given a regular expression
|
|
* @param {Array} array
|
|
* @param {RegExp} regexp
|
|
* @return {Array} Returns the filtered array
|
|
* @private
|
|
*/
|
|
export function filterRegExp (array, regexp) {
|
|
if (arraySize(array).length !== 1) {
|
|
throw new Error('Only one dimensional matrices supported')
|
|
}
|
|
|
|
return Array.prototype.filter.call(array, (entry) => regexp.test(entry))
|
|
}
|
|
|
|
/**
|
|
* A safe join
|
|
* @param {Array} array
|
|
* @param {string} separator
|
|
*/
|
|
export function join (array, separator) {
|
|
return Array.prototype.join.call(array, separator)
|
|
}
|
|
|
|
/**
|
|
* Assign a numeric identifier to every element of a sorted array
|
|
* @param {Array} a An array
|
|
* @return {Array} An array of objects containing the original value and its identifier
|
|
*/
|
|
export function identify (a) {
|
|
if (!Array.isArray(a)) {
|
|
throw new TypeError('Array input expected')
|
|
}
|
|
|
|
if (a.length === 0) {
|
|
return a
|
|
}
|
|
|
|
const b = []
|
|
let count = 0
|
|
b[0] = { value: a[0], identifier: 0 }
|
|
for (let i = 1; i < a.length; i++) {
|
|
if (a[i] === a[i - 1]) {
|
|
count++
|
|
} else {
|
|
count = 0
|
|
}
|
|
b.push({ value: a[i], identifier: count })
|
|
}
|
|
return b
|
|
}
|
|
|
|
/**
|
|
* Remove the numeric identifier from the elements
|
|
* @param {array} a An array
|
|
* @return {array} An array of values without identifiers
|
|
*/
|
|
export function generalize (a) {
|
|
if (!Array.isArray(a)) {
|
|
throw new TypeError('Array input expected')
|
|
}
|
|
|
|
if (a.length === 0) {
|
|
return a
|
|
}
|
|
|
|
const b = []
|
|
for (let i = 0; i < a.length; i++) {
|
|
b.push(a[i].value)
|
|
}
|
|
return b
|
|
}
|
|
|
|
/**
|
|
* Check the datatype of a given object
|
|
* This is a low level implementation that should only be used by
|
|
* parent Matrix classes such as SparseMatrix or DenseMatrix
|
|
* This method does not validate Array Matrix shape
|
|
* @param {Array} array
|
|
* @param {function} typeOf Callback function to use to determine the type of a value
|
|
* @return {string}
|
|
*/
|
|
export function getArrayDataType (array, typeOf) {
|
|
let type // to hold type info
|
|
let length = 0 // to hold length value to ensure it has consistent sizes
|
|
|
|
for (let i = 0; i < array.length; i++) {
|
|
const item = array[i]
|
|
const isArray = Array.isArray(item)
|
|
|
|
// Saving the target matrix row size
|
|
if (i === 0 && isArray) {
|
|
length = item.length
|
|
}
|
|
|
|
// If the current item is an array but the length does not equal the targetVectorSize
|
|
if (isArray && item.length !== length) {
|
|
return undefined
|
|
}
|
|
|
|
const itemType = isArray
|
|
? getArrayDataType(item, typeOf) // recurse into a nested array
|
|
: typeOf(item)
|
|
|
|
if (type === undefined) {
|
|
type = itemType // first item
|
|
} else if (type !== itemType) {
|
|
return 'mixed'
|
|
} else {
|
|
// we're good, everything has the same type so far
|
|
}
|
|
}
|
|
|
|
return type
|
|
}
|
|
|
|
/**
|
|
* Return the last item from an array
|
|
* @param {array}
|
|
* @returns {*}
|
|
*/
|
|
export function last (array) {
|
|
return array[array.length - 1]
|
|
}
|
|
|
|
/**
|
|
* Get all but the last element of array.
|
|
* @param {array}
|
|
* @returns {*}
|
|
*/
|
|
export function initial (array) {
|
|
return array.slice(0, array.length - 1)
|
|
}
|
|
|
|
/**
|
|
* Recursively concatenate two matrices.
|
|
* The contents of the matrices is not cloned.
|
|
* @param {Array} a Multi dimensional array
|
|
* @param {Array} b Multi dimensional array
|
|
* @param {number} concatDim The dimension on which to concatenate (zero-based)
|
|
* @param {number} dim The current dim (zero-based)
|
|
* @return {Array} c The concatenated matrix
|
|
* @private
|
|
*/
|
|
function concatRecursive (a, b, concatDim, dim) {
|
|
if (dim < concatDim) {
|
|
// recurse into next dimension
|
|
if (a.length !== b.length) {
|
|
throw new DimensionError(a.length, b.length)
|
|
}
|
|
|
|
const c = []
|
|
for (let i = 0; i < a.length; i++) {
|
|
c[i] = concatRecursive(a[i], b[i], concatDim, dim + 1)
|
|
}
|
|
return c
|
|
} else {
|
|
// concatenate this dimension
|
|
return a.concat(b)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Concatenates many arrays in the specified direction
|
|
* @param {...Array} arrays All the arrays to concatenate
|
|
* @param {number} concatDim The dimension on which to concatenate (zero-based)
|
|
* @returns
|
|
*/
|
|
export function concat () {
|
|
const arrays = Array.prototype.slice.call(arguments, 0, -1)
|
|
const concatDim = Array.prototype.slice.call(arguments, -1)
|
|
|
|
if (arrays.length === 1) {
|
|
return arrays[0]
|
|
}
|
|
if (arrays.length > 1) {
|
|
return arrays.slice(1).reduce(function (A, B) { return concatRecursive(A, B, concatDim, 0) }, arrays[0])
|
|
} else {
|
|
throw new Error('Wrong number of arguments in function concat')
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Receives two or more sizes and get's the broadcasted size for both.
|
|
* @param {...number[]} sizes Sizes to broadcast together
|
|
* @returns
|
|
*/
|
|
export function broadcastSizes (...sizes) {
|
|
const dimensions = sizes.map((s) => s.length)
|
|
const N = Math.max(...dimensions)
|
|
const sizeMax = new Array(N).fill(null)
|
|
// check for every size
|
|
for (let i = 0; i < sizes.length; i++) {
|
|
const size = sizes[i]
|
|
const dim = dimensions[i]
|
|
for (let j = 0; j < dim; j++) {
|
|
const n = N - dim + j
|
|
if (size[j] > sizeMax[n]) {
|
|
sizeMax[n] = size[j]
|
|
}
|
|
}
|
|
}
|
|
for (let i = 0; i < sizes.length; i++) {
|
|
checkBroadcastingRules(sizes[i], sizeMax)
|
|
}
|
|
return sizeMax
|
|
}
|
|
|
|
/**
|
|
* Checks if it's possible to broadcast a size to another size
|
|
* @param {number[]} size The size of the array to check
|
|
* @param {number[]} toSize The size of the array to validate if it can be broadcasted to
|
|
*/
|
|
export function checkBroadcastingRules (size, toSize) {
|
|
const N = toSize.length
|
|
const dim = size.length
|
|
for (let j = 0; j < dim; j++) {
|
|
const n = N - dim + j
|
|
if ((size[j] < toSize[n] && size[j] > 1) || (size[j] > toSize[n])) {
|
|
throw new Error(
|
|
`shape missmatch: missmatch is found in arg with shape (${size}) not possible to broadcast dimension ${dim} with size ${size[j]} to size ${toSize[n]}`
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Broadcasts a single array to a certain size
|
|
* @param {array} array Array to be broadcasted
|
|
* @param {number[]} toSize Size to broadcast the array
|
|
* @returns The broadcasted array
|
|
*/
|
|
export function broadcastTo (array, toSize) {
|
|
let Asize = arraySize(array)
|
|
if (deepStrictEqual(Asize, toSize)) {
|
|
return array
|
|
}
|
|
checkBroadcastingRules(Asize, toSize)
|
|
const broadcastedSize = broadcastSizes(Asize, toSize)
|
|
const N = broadcastedSize.length
|
|
const paddedSize = [...Array(N - Asize.length).fill(1), ...Asize]
|
|
|
|
let A = clone(array)
|
|
// reshape A if needed to make it ready for concat
|
|
if (Asize.length < N) {
|
|
A = reshape(A, paddedSize)
|
|
Asize = arraySize(A)
|
|
}
|
|
|
|
// stretches the array on each dimension to make it the same size as index
|
|
for (let dim = 0; dim < N; dim++) {
|
|
if (Asize[dim] < broadcastedSize[dim]) {
|
|
A = stretch(A, broadcastedSize[dim], dim)
|
|
Asize = arraySize(A)
|
|
}
|
|
}
|
|
return A
|
|
}
|
|
|
|
/**
|
|
* Broadcasts arrays and returns the broadcasted arrays in an array
|
|
* @param {...Array | any} arrays
|
|
* @returns
|
|
*/
|
|
export function broadcastArrays (...arrays) {
|
|
if (arrays.length === 0) {
|
|
throw new Error('Insuficient number of argumnets in function broadcastArrays')
|
|
}
|
|
if (arrays.length === 1) {
|
|
return arrays[0]
|
|
}
|
|
const sizes = arrays.map(function (array) { return arraySize(array) })
|
|
const broadcastedSize = broadcastSizes(...sizes)
|
|
const broadcastedArrays = []
|
|
arrays.forEach(function (array) { broadcastedArrays.push(broadcastTo(array, broadcastedSize)) })
|
|
return broadcastedArrays
|
|
}
|
|
|
|
/**
|
|
* stretches a matrix up to a certain size in a certain dimension
|
|
* @param {Array} arrayToStretch
|
|
* @param {number[]} sizeToStretch
|
|
* @param {number} dimToStretch
|
|
* @returns
|
|
*/
|
|
export function stretch (arrayToStretch, sizeToStretch, dimToStretch) {
|
|
return concat(...Array(sizeToStretch).fill(arrayToStretch), dimToStretch)
|
|
}
|
|
|
|
/**
|
|
* Deep clones a multidimensional array
|
|
* @param {Array} array
|
|
* @returns cloned array
|
|
*/
|
|
export function clone (array) {
|
|
return Object.assign([], array)
|
|
}
|