Jos de Jong 6f00715754
Specify import require paths (continuation of #1941) (#1962)
* Add `.js` extension to source file imports

* Specify package `exports` in `package.json`

Specify package type as `commonjs` (It's good to be specific)

* Move all compiled scripts into `lib` directory

Remove ./number.js (You can use the compiled ones in `./lib/*`)

Tell node that the `esm` directory is type `module` and enable tree shaking.

Remove unused files from packages `files` property

* Allow importing of package.json

* Make library ESM first

* - Fix merge conflicts
- Refactor `bundleAny` into `defaultInstance.js` and `browserBundle.cjs`
- Refactor unit tests to be able to run with plain nodejs (no transpiling)
- Fix browser examples

* Fix browser and browserstack tests

* Fix running unit tests on Node 10 (which has no support for modules)

* Fix node.js examples (those are still commonjs)

* Remove the need for `browserBundle.cjs`

* Generate minified bundle only

* [Security] Bump node-fetch from 2.6.0 to 2.6.1 (#1963)

Bumps [node-fetch](https://github.com/bitinn/node-fetch) from 2.6.0 to 2.6.1. **This update includes a security fix.**
- [Release notes](https://github.com/bitinn/node-fetch/releases)
- [Changelog](https://github.com/node-fetch/node-fetch/blob/master/docs/CHANGELOG.md)
- [Commits](https://github.com/bitinn/node-fetch/compare/v2.6.0...v2.6.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>

Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>

* Cleanup console.log

* Add integration tests to test the entry points (commonjs/esm, full/number only)

* Create backward compatibility error messages in the files moved/removed since v8

* Describe breaking changes in HISTORY.md

* Bump karma from 5.2.1 to 5.2.2 (#1965)

Bumps [karma](https://github.com/karma-runner/karma) from 5.2.1 to 5.2.2.
- [Release notes](https://github.com/karma-runner/karma/releases)
- [Changelog](https://github.com/karma-runner/karma/blob/master/CHANGELOG.md)
- [Commits](https://github.com/karma-runner/karma/compare/v5.2.1...v5.2.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>

Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>

Co-authored-by: Lee Langley-Rees <lee@greenimp.co.uk>
Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>
2020-09-20 18:01:29 +02:00

886 lines
24 KiB
JavaScript

import { factory } from '../../utils/factory.js'
import { isMatrix } from '../../utils/is.js'
import { extend } from '../../utils/object.js'
import { arraySize } from '../../utils/array.js'
import { createAlgorithm11 } from '../../type/matrix/utils/algorithm11.js'
import { createAlgorithm14 } from '../../type/matrix/utils/algorithm14.js'
const name = 'multiply'
const dependencies = [
'typed',
'matrix',
'addScalar',
'multiplyScalar',
'equalScalar',
'dot'
]
export const createMultiply = /* #__PURE__ */ factory(name, dependencies, ({ typed, matrix, addScalar, multiplyScalar, equalScalar, dot }) => {
const algorithm11 = createAlgorithm11({ typed, equalScalar })
const algorithm14 = createAlgorithm14({ typed })
function _validateMatrixDimensions (size1, size2) {
// check left operand dimensions
switch (size1.length) {
case 1:
// check size2
switch (size2.length) {
case 1:
// Vector x Vector
if (size1[0] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length')
}
break
case 2:
// Vector x Matrix
if (size1[0] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')')
}
break
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)')
}
break
case 2:
// check size2
switch (size2.length) {
case 1:
// Matrix x Vector
if (size1[1] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')')
}
break
case 2:
// Matrix x Matrix
if (size1[1] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')')
}
break
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)')
}
break
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)')
}
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (N)
* @param {Matrix} b Dense Vector (N)
*
* @return {number} Scalar value
*/
function _multiplyVectorVector (a, b, n) {
// check empty vector
if (n === 0) { throw new Error('Cannot multiply two empty vectors') }
return dot(a, b)
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (M)
* @param {Matrix} b Matrix (MxN)
*
* @return {Matrix} Dense Vector (N)
*/
function _multiplyVectorMatrix (a, b) {
// process storage
if (b.storage() !== 'dense') {
throw new Error('Support for SparseMatrix not implemented')
}
return _multiplyVectorDenseMatrix(a, b)
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (M)
* @param {Matrix} b Dense Matrix (MxN)
*
* @return {Matrix} Dense Vector (N)
*/
function _multiplyVectorDenseMatrix (a, b) {
// a dense
const adata = a._data
const asize = a._size
const adt = a._datatype
// b dense
const bdata = b._data
const bsize = b._size
const bdt = b._datatype
// rows & columns
const alength = asize[0]
const bcolumns = bsize[1]
// datatype
let dt
// addScalar signature to use
let af = addScalar
// multiplyScalar signature to use
let mf = multiplyScalar
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt])
mf = typed.find(multiplyScalar, [dt, dt])
}
// result
const c = []
// loop matrix columns
for (let j = 0; j < bcolumns; j++) {
// sum (do not initialize it with zero)
let sum = mf(adata[0], bdata[0][j])
// loop vector
for (let i = 1; i < alength; i++) {
// multiply & accumulate
sum = af(sum, mf(adata[i], bdata[i][j]))
}
c[j] = sum
}
// return matrix
return a.createDenseMatrix({
data: c,
size: [bcolumns],
datatype: dt
})
}
/**
* C = A * B
*
* @param {Matrix} a Matrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} Dense Vector (M)
*/
const _multiplyMatrixVector = typed('_multiplyMatrixVector', {
'DenseMatrix, any': _multiplyDenseMatrixVector,
'SparseMatrix, any': _multiplySparseMatrixVector
})
/**
* C = A * B
*
* @param {Matrix} a Matrix (MxN)
* @param {Matrix} b Matrix (NxC)
*
* @return {Matrix} Matrix (MxC)
*/
const _multiplyMatrixMatrix = typed('_multiplyMatrixMatrix', {
'DenseMatrix, DenseMatrix': _multiplyDenseMatrixDenseMatrix,
'DenseMatrix, SparseMatrix': _multiplyDenseMatrixSparseMatrix,
'SparseMatrix, DenseMatrix': _multiplySparseMatrixDenseMatrix,
'SparseMatrix, SparseMatrix': _multiplySparseMatrixSparseMatrix
})
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} Dense Vector (M)
*/
function _multiplyDenseMatrixVector (a, b) {
// a dense
const adata = a._data
const asize = a._size
const adt = a._datatype
// b dense
const bdata = b._data
const bdt = b._datatype
// rows & columns
const arows = asize[0]
const acolumns = asize[1]
// datatype
let dt
// addScalar signature to use
let af = addScalar
// multiplyScalar signature to use
let mf = multiplyScalar
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt])
mf = typed.find(multiplyScalar, [dt, dt])
}
// result
const c = []
// loop matrix a rows
for (let i = 0; i < arows; i++) {
// current row
const row = adata[i]
// sum (do not initialize it with zero)
let sum = mf(row[0], bdata[0])
// loop matrix a columns
for (let j = 1; j < acolumns; j++) {
// multiply & accumulate
sum = af(sum, mf(row[j], bdata[j]))
}
c[i] = sum
}
// return matrix
return a.createDenseMatrix({
data: c,
size: [arows],
datatype: dt
})
}
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b DenseMatrix (NxC)
*
* @return {Matrix} DenseMatrix (MxC)
*/
function _multiplyDenseMatrixDenseMatrix (a, b) {
// a dense
const adata = a._data
const asize = a._size
const adt = a._datatype
// b dense
const bdata = b._data
const bsize = b._size
const bdt = b._datatype
// rows & columns
const arows = asize[0]
const acolumns = asize[1]
const bcolumns = bsize[1]
// datatype
let dt
// addScalar signature to use
let af = addScalar
// multiplyScalar signature to use
let mf = multiplyScalar
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt])
mf = typed.find(multiplyScalar, [dt, dt])
}
// result
const c = []
// loop matrix a rows
for (let i = 0; i < arows; i++) {
// current row
const row = adata[i]
// initialize row array
c[i] = []
// loop matrix b columns
for (let j = 0; j < bcolumns; j++) {
// sum (avoid initializing sum to zero)
let sum = mf(row[0], bdata[0][j])
// loop matrix a columns
for (let x = 1; x < acolumns; x++) {
// multiply & accumulate
sum = af(sum, mf(row[x], bdata[x][j]))
}
c[i][j] = sum
}
}
// return matrix
return a.createDenseMatrix({
data: c,
size: [arows, bcolumns],
datatype: dt
})
}
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b SparseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplyDenseMatrixSparseMatrix (a, b) {
// a dense
const adata = a._data
const asize = a._size
const adt = a._datatype
// b sparse
const bvalues = b._values
const bindex = b._index
const bptr = b._ptr
const bsize = b._size
const bdt = b._datatype
// validate b matrix
if (!bvalues) { throw new Error('Cannot multiply Dense Matrix times Pattern only Matrix') }
// rows & columns
const arows = asize[0]
const bcolumns = bsize[1]
// datatype
let dt
// addScalar signature to use
let af = addScalar
// multiplyScalar signature to use
let mf = multiplyScalar
// equalScalar signature to use
let eq = equalScalar
// zero value
let zero = 0
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt])
mf = typed.find(multiplyScalar, [dt, dt])
eq = typed.find(equalScalar, [dt, dt])
// convert 0 to the same datatype
zero = typed.convert(0, dt)
}
// result
const cvalues = []
const cindex = []
const cptr = []
// c matrix
const c = b.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: dt
})
// loop b columns
for (let jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length
// indeces in column jb
const kb0 = bptr[jb]
const kb1 = bptr[jb + 1]
// do not process column jb if no data exists
if (kb1 > kb0) {
// last row mark processed
let last = 0
// loop a rows
for (let i = 0; i < arows; i++) {
// column mark
const mark = i + 1
// C[i, jb]
let cij
// values in b column j
for (let kb = kb0; kb < kb1; kb++) {
// row
const ib = bindex[kb]
// check value has been initialized
if (last !== mark) {
// first value in column jb
cij = mf(adata[i][ib], bvalues[kb])
// update mark
last = mark
} else {
// accumulate value
cij = af(cij, mf(adata[i][ib], bvalues[kb]))
}
}
// check column has been processed and value != 0
if (last === mark && !eq(cij, zero)) {
// push row & value
cindex.push(i)
cvalues.push(cij)
}
}
}
}
// update ptr
cptr[bcolumns] = cindex.length
// return sparse matrix
return c
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} SparseMatrix (M, 1)
*/
function _multiplySparseMatrixVector (a, b) {
// a sparse
const avalues = a._values
const aindex = a._index
const aptr = a._ptr
const adt = a._datatype
// validate a matrix
if (!avalues) { throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix') }
// b dense
const bdata = b._data
const bdt = b._datatype
// rows & columns
const arows = a._size[0]
const brows = b._size[0]
// result
const cvalues = []
const cindex = []
const cptr = []
// datatype
let dt
// addScalar signature to use
let af = addScalar
// multiplyScalar signature to use
let mf = multiplyScalar
// equalScalar signature to use
let eq = equalScalar
// zero value
let zero = 0
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt])
mf = typed.find(multiplyScalar, [dt, dt])
eq = typed.find(equalScalar, [dt, dt])
// convert 0 to the same datatype
zero = typed.convert(0, dt)
}
// workspace
const x = []
// vector with marks indicating a value x[i] exists in a given column
const w = []
// update ptr
cptr[0] = 0
// rows in b
for (let ib = 0; ib < brows; ib++) {
// b[ib]
const vbi = bdata[ib]
// check b[ib] != 0, avoid loops
if (!eq(vbi, zero)) {
// A values & index in ib column
for (let ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// a row
const ia = aindex[ka]
// check value exists in current j
if (!w[ia]) {
// ia is new entry in j
w[ia] = true
// add i to pattern of C
cindex.push(ia)
// x(ia) = A
x[ia] = mf(vbi, avalues[ka])
} else {
// i exists in C already
x[ia] = af(x[ia], mf(vbi, avalues[ka]))
}
}
}
}
// copy values from x to column jb of c
for (let p1 = cindex.length, p = 0; p < p1; p++) {
// row
const ic = cindex[p]
// copy value
cvalues[p] = x[ic]
}
// update ptr
cptr[1] = cindex.length
// return sparse matrix
return a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, 1],
datatype: dt
})
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b DenseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplySparseMatrixDenseMatrix (a, b) {
// a sparse
const avalues = a._values
const aindex = a._index
const aptr = a._ptr
const adt = a._datatype
// validate a matrix
if (!avalues) { throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix') }
// b dense
const bdata = b._data
const bdt = b._datatype
// rows & columns
const arows = a._size[0]
const brows = b._size[0]
const bcolumns = b._size[1]
// datatype
let dt
// addScalar signature to use
let af = addScalar
// multiplyScalar signature to use
let mf = multiplyScalar
// equalScalar signature to use
let eq = equalScalar
// zero value
let zero = 0
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt])
mf = typed.find(multiplyScalar, [dt, dt])
eq = typed.find(equalScalar, [dt, dt])
// convert 0 to the same datatype
zero = typed.convert(0, dt)
}
// result
const cvalues = []
const cindex = []
const cptr = []
// c matrix
const c = a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: dt
})
// workspace
const x = []
// vector with marks indicating a value x[i] exists in a given column
const w = []
// loop b columns
for (let jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length
// mark in workspace for current column
const mark = jb + 1
// rows in jb
for (let ib = 0; ib < brows; ib++) {
// b[ib, jb]
const vbij = bdata[ib][jb]
// check b[ib, jb] != 0, avoid loops
if (!eq(vbij, zero)) {
// A values & index in ib column
for (let ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// a row
const ia = aindex[ka]
// check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark
// add i to pattern of C
cindex.push(ia)
// x(ia) = A
x[ia] = mf(vbij, avalues[ka])
} else {
// i exists in C already
x[ia] = af(x[ia], mf(vbij, avalues[ka]))
}
}
}
}
// copy values from x to column jb of c
for (let p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
// row
const ic = cindex[p]
// copy value
cvalues[p] = x[ic]
}
}
// update ptr
cptr[bcolumns] = cindex.length
// return sparse matrix
return c
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b SparseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplySparseMatrixSparseMatrix (a, b) {
// a sparse
const avalues = a._values
const aindex = a._index
const aptr = a._ptr
const adt = a._datatype
// b sparse
const bvalues = b._values
const bindex = b._index
const bptr = b._ptr
const bdt = b._datatype
// rows & columns
const arows = a._size[0]
const bcolumns = b._size[1]
// flag indicating both matrices (a & b) contain data
const values = avalues && bvalues
// datatype
let dt
// addScalar signature to use
let af = addScalar
// multiplyScalar signature to use
let mf = multiplyScalar
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string') {
// datatype
dt = adt
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt])
mf = typed.find(multiplyScalar, [dt, dt])
}
// result
const cvalues = values ? [] : undefined
const cindex = []
const cptr = []
// c matrix
const c = a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: dt
})
// workspace
const x = values ? [] : undefined
// vector with marks indicating a value x[i] exists in a given column
const w = []
// variables
let ka, ka0, ka1, kb, kb0, kb1, ia, ib
// loop b columns
for (let jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length
// mark in workspace for current column
const mark = jb + 1
// B values & index in j
for (kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) {
// b row
ib = bindex[kb]
// check we need to process values
if (values) {
// loop values in a[:,ib]
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// row
ia = aindex[ka]
// check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark
// add i to pattern of C
cindex.push(ia)
// x(ia) = A
x[ia] = mf(bvalues[kb], avalues[ka])
} else {
// i exists in C already
x[ia] = af(x[ia], mf(bvalues[kb], avalues[ka]))
}
}
} else {
// loop values in a[:,ib]
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// row
ia = aindex[ka]
// check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark
// add i to pattern of C
cindex.push(ia)
}
}
}
}
// check we need to process matrix values (pattern matrix)
if (values) {
// copy values from x to column jb of c
for (let p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
// row
const ic = cindex[p]
// copy value
cvalues[p] = x[ic]
}
}
}
// update ptr
cptr[bcolumns] = cindex.length
// return sparse matrix
return c
}
/**
* Multiply two or more values, `x * y`.
* For matrices, the matrix product is calculated.
*
* Syntax:
*
* math.multiply(x, y)
* math.multiply(x, y, z, ...)
*
* Examples:
*
* math.multiply(4, 5.2) // returns number 20.8
* math.multiply(2, 3, 4) // returns number 24
*
* const a = math.complex(2, 3)
* const b = math.complex(4, 1)
* math.multiply(a, b) // returns Complex 5 + 14i
*
* const c = [[1, 2], [4, 3]]
* const d = [[1, 2, 3], [3, -4, 7]]
* math.multiply(c, d) // returns Array [[7, -6, 17], [13, -4, 33]]
*
* const e = math.unit('2.1 km')
* math.multiply(3, e) // returns Unit 6.3 km
*
* See also:
*
* divide, prod, cross, dot
*
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} x First value to multiply
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} y Second value to multiply
* @return {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
*/
return typed(name, extend({
// we extend the signatures of multiplyScalar with signatures dealing with matrices
'Array, Array': function (x, y) {
// check dimensions
_validateMatrixDimensions(arraySize(x), arraySize(y))
// use dense matrix implementation
const m = this(matrix(x), matrix(y))
// return array or scalar
return isMatrix(m) ? m.valueOf() : m
},
'Matrix, Matrix': function (x, y) {
// dimensions
const xsize = x.size()
const ysize = y.size()
// check dimensions
_validateMatrixDimensions(xsize, ysize)
// process dimensions
if (xsize.length === 1) {
// process y dimensions
if (ysize.length === 1) {
// Vector * Vector
return _multiplyVectorVector(x, y, xsize[0])
}
// Vector * Matrix
return _multiplyVectorMatrix(x, y)
}
// process y dimensions
if (ysize.length === 1) {
// Matrix * Vector
return _multiplyMatrixVector(x, y)
}
// Matrix * Matrix
return _multiplyMatrixMatrix(x, y)
},
'Matrix, Array': function (x, y) {
// use Matrix * Matrix implementation
return this(x, matrix(y))
},
'Array, Matrix': function (x, y) {
// use Matrix * Matrix implementation
return this(matrix(x, y.storage()), y)
},
'SparseMatrix, any': function (x, y) {
return algorithm11(x, y, multiplyScalar, false)
},
'DenseMatrix, any': function (x, y) {
return algorithm14(x, y, multiplyScalar, false)
},
'any, SparseMatrix': function (x, y) {
return algorithm11(y, x, multiplyScalar, true)
},
'any, DenseMatrix': function (x, y) {
return algorithm14(y, x, multiplyScalar, true)
},
'Array, any': function (x, y) {
// use matrix implementation
return algorithm14(matrix(x), y, multiplyScalar, false).valueOf()
},
'any, Array': function (x, y) {
// use matrix implementation
return algorithm14(matrix(y), x, multiplyScalar, true).valueOf()
},
'any, any': multiplyScalar,
'any, any, ...any': function (x, y, rest) {
let result = this(x, y)
for (let i = 0; i < rest.length; i++) {
result = this(result, rest[i])
}
return result
}
}, multiplyScalar.signatures))
})