mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-18 14:59:29 +00:00
* Add `.js` extension to source file imports * Specify package `exports` in `package.json` Specify package type as `commonjs` (It's good to be specific) * Move all compiled scripts into `lib` directory Remove ./number.js (You can use the compiled ones in `./lib/*`) Tell node that the `esm` directory is type `module` and enable tree shaking. Remove unused files from packages `files` property * Allow importing of package.json * Make library ESM first * - Fix merge conflicts - Refactor `bundleAny` into `defaultInstance.js` and `browserBundle.cjs` - Refactor unit tests to be able to run with plain nodejs (no transpiling) - Fix browser examples * Fix browser and browserstack tests * Fix running unit tests on Node 10 (which has no support for modules) * Fix node.js examples (those are still commonjs) * Remove the need for `browserBundle.cjs` * Generate minified bundle only * [Security] Bump node-fetch from 2.6.0 to 2.6.1 (#1963) Bumps [node-fetch](https://github.com/bitinn/node-fetch) from 2.6.0 to 2.6.1. **This update includes a security fix.** - [Release notes](https://github.com/bitinn/node-fetch/releases) - [Changelog](https://github.com/node-fetch/node-fetch/blob/master/docs/CHANGELOG.md) - [Commits](https://github.com/bitinn/node-fetch/compare/v2.6.0...v2.6.1) Signed-off-by: dependabot-preview[bot] <support@dependabot.com> Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com> * Cleanup console.log * Add integration tests to test the entry points (commonjs/esm, full/number only) * Create backward compatibility error messages in the files moved/removed since v8 * Describe breaking changes in HISTORY.md * Bump karma from 5.2.1 to 5.2.2 (#1965) Bumps [karma](https://github.com/karma-runner/karma) from 5.2.1 to 5.2.2. - [Release notes](https://github.com/karma-runner/karma/releases) - [Changelog](https://github.com/karma-runner/karma/blob/master/CHANGELOG.md) - [Commits](https://github.com/karma-runner/karma/compare/v5.2.1...v5.2.2) Signed-off-by: dependabot-preview[bot] <support@dependabot.com> Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com> Co-authored-by: Lee Langley-Rees <lee@greenimp.co.uk> Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>
886 lines
24 KiB
JavaScript
886 lines
24 KiB
JavaScript
import { factory } from '../../utils/factory.js'
|
|
import { isMatrix } from '../../utils/is.js'
|
|
import { extend } from '../../utils/object.js'
|
|
import { arraySize } from '../../utils/array.js'
|
|
import { createAlgorithm11 } from '../../type/matrix/utils/algorithm11.js'
|
|
import { createAlgorithm14 } from '../../type/matrix/utils/algorithm14.js'
|
|
|
|
const name = 'multiply'
|
|
const dependencies = [
|
|
'typed',
|
|
'matrix',
|
|
'addScalar',
|
|
'multiplyScalar',
|
|
'equalScalar',
|
|
'dot'
|
|
]
|
|
|
|
export const createMultiply = /* #__PURE__ */ factory(name, dependencies, ({ typed, matrix, addScalar, multiplyScalar, equalScalar, dot }) => {
|
|
const algorithm11 = createAlgorithm11({ typed, equalScalar })
|
|
const algorithm14 = createAlgorithm14({ typed })
|
|
|
|
function _validateMatrixDimensions (size1, size2) {
|
|
// check left operand dimensions
|
|
switch (size1.length) {
|
|
case 1:
|
|
// check size2
|
|
switch (size2.length) {
|
|
case 1:
|
|
// Vector x Vector
|
|
if (size1[0] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length')
|
|
}
|
|
break
|
|
case 2:
|
|
// Vector x Matrix
|
|
if (size1[0] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')')
|
|
}
|
|
break
|
|
default:
|
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)')
|
|
}
|
|
break
|
|
case 2:
|
|
// check size2
|
|
switch (size2.length) {
|
|
case 1:
|
|
// Matrix x Vector
|
|
if (size1[1] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')')
|
|
}
|
|
break
|
|
case 2:
|
|
// Matrix x Matrix
|
|
if (size1[1] !== size2[0]) {
|
|
// throw error
|
|
throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')')
|
|
}
|
|
break
|
|
default:
|
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)')
|
|
}
|
|
break
|
|
default:
|
|
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)')
|
|
}
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Dense Vector (N)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {number} Scalar value
|
|
*/
|
|
function _multiplyVectorVector (a, b, n) {
|
|
// check empty vector
|
|
if (n === 0) { throw new Error('Cannot multiply two empty vectors') }
|
|
return dot(a, b)
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Dense Vector (M)
|
|
* @param {Matrix} b Matrix (MxN)
|
|
*
|
|
* @return {Matrix} Dense Vector (N)
|
|
*/
|
|
function _multiplyVectorMatrix (a, b) {
|
|
// process storage
|
|
if (b.storage() !== 'dense') {
|
|
throw new Error('Support for SparseMatrix not implemented')
|
|
}
|
|
return _multiplyVectorDenseMatrix(a, b)
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Dense Vector (M)
|
|
* @param {Matrix} b Dense Matrix (MxN)
|
|
*
|
|
* @return {Matrix} Dense Vector (N)
|
|
*/
|
|
function _multiplyVectorDenseMatrix (a, b) {
|
|
// a dense
|
|
const adata = a._data
|
|
const asize = a._size
|
|
const adt = a._datatype
|
|
// b dense
|
|
const bdata = b._data
|
|
const bsize = b._size
|
|
const bdt = b._datatype
|
|
// rows & columns
|
|
const alength = asize[0]
|
|
const bcolumns = bsize[1]
|
|
|
|
// datatype
|
|
let dt
|
|
// addScalar signature to use
|
|
let af = addScalar
|
|
// multiplyScalar signature to use
|
|
let mf = multiplyScalar
|
|
|
|
// process data types
|
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
|
// datatype
|
|
dt = adt
|
|
// find signatures that matches (dt, dt)
|
|
af = typed.find(addScalar, [dt, dt])
|
|
mf = typed.find(multiplyScalar, [dt, dt])
|
|
}
|
|
|
|
// result
|
|
const c = []
|
|
|
|
// loop matrix columns
|
|
for (let j = 0; j < bcolumns; j++) {
|
|
// sum (do not initialize it with zero)
|
|
let sum = mf(adata[0], bdata[0][j])
|
|
// loop vector
|
|
for (let i = 1; i < alength; i++) {
|
|
// multiply & accumulate
|
|
sum = af(sum, mf(adata[i], bdata[i][j]))
|
|
}
|
|
c[j] = sum
|
|
}
|
|
|
|
// return matrix
|
|
return a.createDenseMatrix({
|
|
data: c,
|
|
size: [bcolumns],
|
|
datatype: dt
|
|
})
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Matrix (MxN)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {Matrix} Dense Vector (M)
|
|
*/
|
|
const _multiplyMatrixVector = typed('_multiplyMatrixVector', {
|
|
'DenseMatrix, any': _multiplyDenseMatrixVector,
|
|
'SparseMatrix, any': _multiplySparseMatrixVector
|
|
})
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a Matrix (MxN)
|
|
* @param {Matrix} b Matrix (NxC)
|
|
*
|
|
* @return {Matrix} Matrix (MxC)
|
|
*/
|
|
const _multiplyMatrixMatrix = typed('_multiplyMatrixMatrix', {
|
|
'DenseMatrix, DenseMatrix': _multiplyDenseMatrixDenseMatrix,
|
|
'DenseMatrix, SparseMatrix': _multiplyDenseMatrixSparseMatrix,
|
|
'SparseMatrix, DenseMatrix': _multiplySparseMatrixDenseMatrix,
|
|
'SparseMatrix, SparseMatrix': _multiplySparseMatrixSparseMatrix
|
|
})
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {Matrix} Dense Vector (M)
|
|
*/
|
|
function _multiplyDenseMatrixVector (a, b) {
|
|
// a dense
|
|
const adata = a._data
|
|
const asize = a._size
|
|
const adt = a._datatype
|
|
// b dense
|
|
const bdata = b._data
|
|
const bdt = b._datatype
|
|
// rows & columns
|
|
const arows = asize[0]
|
|
const acolumns = asize[1]
|
|
|
|
// datatype
|
|
let dt
|
|
// addScalar signature to use
|
|
let af = addScalar
|
|
// multiplyScalar signature to use
|
|
let mf = multiplyScalar
|
|
|
|
// process data types
|
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
|
// datatype
|
|
dt = adt
|
|
// find signatures that matches (dt, dt)
|
|
af = typed.find(addScalar, [dt, dt])
|
|
mf = typed.find(multiplyScalar, [dt, dt])
|
|
}
|
|
|
|
// result
|
|
const c = []
|
|
|
|
// loop matrix a rows
|
|
for (let i = 0; i < arows; i++) {
|
|
// current row
|
|
const row = adata[i]
|
|
// sum (do not initialize it with zero)
|
|
let sum = mf(row[0], bdata[0])
|
|
// loop matrix a columns
|
|
for (let j = 1; j < acolumns; j++) {
|
|
// multiply & accumulate
|
|
sum = af(sum, mf(row[j], bdata[j]))
|
|
}
|
|
c[i] = sum
|
|
}
|
|
|
|
// return matrix
|
|
return a.createDenseMatrix({
|
|
data: c,
|
|
size: [arows],
|
|
datatype: dt
|
|
})
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b DenseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} DenseMatrix (MxC)
|
|
*/
|
|
function _multiplyDenseMatrixDenseMatrix (a, b) {
|
|
// a dense
|
|
const adata = a._data
|
|
const asize = a._size
|
|
const adt = a._datatype
|
|
// b dense
|
|
const bdata = b._data
|
|
const bsize = b._size
|
|
const bdt = b._datatype
|
|
// rows & columns
|
|
const arows = asize[0]
|
|
const acolumns = asize[1]
|
|
const bcolumns = bsize[1]
|
|
|
|
// datatype
|
|
let dt
|
|
// addScalar signature to use
|
|
let af = addScalar
|
|
// multiplyScalar signature to use
|
|
let mf = multiplyScalar
|
|
|
|
// process data types
|
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
|
// datatype
|
|
dt = adt
|
|
// find signatures that matches (dt, dt)
|
|
af = typed.find(addScalar, [dt, dt])
|
|
mf = typed.find(multiplyScalar, [dt, dt])
|
|
}
|
|
|
|
// result
|
|
const c = []
|
|
|
|
// loop matrix a rows
|
|
for (let i = 0; i < arows; i++) {
|
|
// current row
|
|
const row = adata[i]
|
|
// initialize row array
|
|
c[i] = []
|
|
// loop matrix b columns
|
|
for (let j = 0; j < bcolumns; j++) {
|
|
// sum (avoid initializing sum to zero)
|
|
let sum = mf(row[0], bdata[0][j])
|
|
// loop matrix a columns
|
|
for (let x = 1; x < acolumns; x++) {
|
|
// multiply & accumulate
|
|
sum = af(sum, mf(row[x], bdata[x][j]))
|
|
}
|
|
c[i][j] = sum
|
|
}
|
|
}
|
|
|
|
// return matrix
|
|
return a.createDenseMatrix({
|
|
data: c,
|
|
size: [arows, bcolumns],
|
|
datatype: dt
|
|
})
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b SparseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxC)
|
|
*/
|
|
function _multiplyDenseMatrixSparseMatrix (a, b) {
|
|
// a dense
|
|
const adata = a._data
|
|
const asize = a._size
|
|
const adt = a._datatype
|
|
// b sparse
|
|
const bvalues = b._values
|
|
const bindex = b._index
|
|
const bptr = b._ptr
|
|
const bsize = b._size
|
|
const bdt = b._datatype
|
|
// validate b matrix
|
|
if (!bvalues) { throw new Error('Cannot multiply Dense Matrix times Pattern only Matrix') }
|
|
// rows & columns
|
|
const arows = asize[0]
|
|
const bcolumns = bsize[1]
|
|
|
|
// datatype
|
|
let dt
|
|
// addScalar signature to use
|
|
let af = addScalar
|
|
// multiplyScalar signature to use
|
|
let mf = multiplyScalar
|
|
// equalScalar signature to use
|
|
let eq = equalScalar
|
|
// zero value
|
|
let zero = 0
|
|
|
|
// process data types
|
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
|
// datatype
|
|
dt = adt
|
|
// find signatures that matches (dt, dt)
|
|
af = typed.find(addScalar, [dt, dt])
|
|
mf = typed.find(multiplyScalar, [dt, dt])
|
|
eq = typed.find(equalScalar, [dt, dt])
|
|
// convert 0 to the same datatype
|
|
zero = typed.convert(0, dt)
|
|
}
|
|
|
|
// result
|
|
const cvalues = []
|
|
const cindex = []
|
|
const cptr = []
|
|
// c matrix
|
|
const c = b.createSparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [arows, bcolumns],
|
|
datatype: dt
|
|
})
|
|
|
|
// loop b columns
|
|
for (let jb = 0; jb < bcolumns; jb++) {
|
|
// update ptr
|
|
cptr[jb] = cindex.length
|
|
// indeces in column jb
|
|
const kb0 = bptr[jb]
|
|
const kb1 = bptr[jb + 1]
|
|
// do not process column jb if no data exists
|
|
if (kb1 > kb0) {
|
|
// last row mark processed
|
|
let last = 0
|
|
// loop a rows
|
|
for (let i = 0; i < arows; i++) {
|
|
// column mark
|
|
const mark = i + 1
|
|
// C[i, jb]
|
|
let cij
|
|
// values in b column j
|
|
for (let kb = kb0; kb < kb1; kb++) {
|
|
// row
|
|
const ib = bindex[kb]
|
|
// check value has been initialized
|
|
if (last !== mark) {
|
|
// first value in column jb
|
|
cij = mf(adata[i][ib], bvalues[kb])
|
|
// update mark
|
|
last = mark
|
|
} else {
|
|
// accumulate value
|
|
cij = af(cij, mf(adata[i][ib], bvalues[kb]))
|
|
}
|
|
}
|
|
// check column has been processed and value != 0
|
|
if (last === mark && !eq(cij, zero)) {
|
|
// push row & value
|
|
cindex.push(i)
|
|
cvalues.push(cij)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// update ptr
|
|
cptr[bcolumns] = cindex.length
|
|
|
|
// return sparse matrix
|
|
return c
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b Dense Vector (N)
|
|
*
|
|
* @return {Matrix} SparseMatrix (M, 1)
|
|
*/
|
|
function _multiplySparseMatrixVector (a, b) {
|
|
// a sparse
|
|
const avalues = a._values
|
|
const aindex = a._index
|
|
const aptr = a._ptr
|
|
const adt = a._datatype
|
|
// validate a matrix
|
|
if (!avalues) { throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix') }
|
|
// b dense
|
|
const bdata = b._data
|
|
const bdt = b._datatype
|
|
// rows & columns
|
|
const arows = a._size[0]
|
|
const brows = b._size[0]
|
|
// result
|
|
const cvalues = []
|
|
const cindex = []
|
|
const cptr = []
|
|
|
|
// datatype
|
|
let dt
|
|
// addScalar signature to use
|
|
let af = addScalar
|
|
// multiplyScalar signature to use
|
|
let mf = multiplyScalar
|
|
// equalScalar signature to use
|
|
let eq = equalScalar
|
|
// zero value
|
|
let zero = 0
|
|
|
|
// process data types
|
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
|
// datatype
|
|
dt = adt
|
|
// find signatures that matches (dt, dt)
|
|
af = typed.find(addScalar, [dt, dt])
|
|
mf = typed.find(multiplyScalar, [dt, dt])
|
|
eq = typed.find(equalScalar, [dt, dt])
|
|
// convert 0 to the same datatype
|
|
zero = typed.convert(0, dt)
|
|
}
|
|
|
|
// workspace
|
|
const x = []
|
|
// vector with marks indicating a value x[i] exists in a given column
|
|
const w = []
|
|
|
|
// update ptr
|
|
cptr[0] = 0
|
|
// rows in b
|
|
for (let ib = 0; ib < brows; ib++) {
|
|
// b[ib]
|
|
const vbi = bdata[ib]
|
|
// check b[ib] != 0, avoid loops
|
|
if (!eq(vbi, zero)) {
|
|
// A values & index in ib column
|
|
for (let ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
|
// a row
|
|
const ia = aindex[ka]
|
|
// check value exists in current j
|
|
if (!w[ia]) {
|
|
// ia is new entry in j
|
|
w[ia] = true
|
|
// add i to pattern of C
|
|
cindex.push(ia)
|
|
// x(ia) = A
|
|
x[ia] = mf(vbi, avalues[ka])
|
|
} else {
|
|
// i exists in C already
|
|
x[ia] = af(x[ia], mf(vbi, avalues[ka]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// copy values from x to column jb of c
|
|
for (let p1 = cindex.length, p = 0; p < p1; p++) {
|
|
// row
|
|
const ic = cindex[p]
|
|
// copy value
|
|
cvalues[p] = x[ic]
|
|
}
|
|
// update ptr
|
|
cptr[1] = cindex.length
|
|
|
|
// return sparse matrix
|
|
return a.createSparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [arows, 1],
|
|
datatype: dt
|
|
})
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b DenseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxC)
|
|
*/
|
|
function _multiplySparseMatrixDenseMatrix (a, b) {
|
|
// a sparse
|
|
const avalues = a._values
|
|
const aindex = a._index
|
|
const aptr = a._ptr
|
|
const adt = a._datatype
|
|
// validate a matrix
|
|
if (!avalues) { throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix') }
|
|
// b dense
|
|
const bdata = b._data
|
|
const bdt = b._datatype
|
|
// rows & columns
|
|
const arows = a._size[0]
|
|
const brows = b._size[0]
|
|
const bcolumns = b._size[1]
|
|
|
|
// datatype
|
|
let dt
|
|
// addScalar signature to use
|
|
let af = addScalar
|
|
// multiplyScalar signature to use
|
|
let mf = multiplyScalar
|
|
// equalScalar signature to use
|
|
let eq = equalScalar
|
|
// zero value
|
|
let zero = 0
|
|
|
|
// process data types
|
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
|
// datatype
|
|
dt = adt
|
|
// find signatures that matches (dt, dt)
|
|
af = typed.find(addScalar, [dt, dt])
|
|
mf = typed.find(multiplyScalar, [dt, dt])
|
|
eq = typed.find(equalScalar, [dt, dt])
|
|
// convert 0 to the same datatype
|
|
zero = typed.convert(0, dt)
|
|
}
|
|
|
|
// result
|
|
const cvalues = []
|
|
const cindex = []
|
|
const cptr = []
|
|
// c matrix
|
|
const c = a.createSparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [arows, bcolumns],
|
|
datatype: dt
|
|
})
|
|
|
|
// workspace
|
|
const x = []
|
|
// vector with marks indicating a value x[i] exists in a given column
|
|
const w = []
|
|
|
|
// loop b columns
|
|
for (let jb = 0; jb < bcolumns; jb++) {
|
|
// update ptr
|
|
cptr[jb] = cindex.length
|
|
// mark in workspace for current column
|
|
const mark = jb + 1
|
|
// rows in jb
|
|
for (let ib = 0; ib < brows; ib++) {
|
|
// b[ib, jb]
|
|
const vbij = bdata[ib][jb]
|
|
// check b[ib, jb] != 0, avoid loops
|
|
if (!eq(vbij, zero)) {
|
|
// A values & index in ib column
|
|
for (let ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
|
// a row
|
|
const ia = aindex[ka]
|
|
// check value exists in current j
|
|
if (w[ia] !== mark) {
|
|
// ia is new entry in j
|
|
w[ia] = mark
|
|
// add i to pattern of C
|
|
cindex.push(ia)
|
|
// x(ia) = A
|
|
x[ia] = mf(vbij, avalues[ka])
|
|
} else {
|
|
// i exists in C already
|
|
x[ia] = af(x[ia], mf(vbij, avalues[ka]))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// copy values from x to column jb of c
|
|
for (let p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
|
|
// row
|
|
const ic = cindex[p]
|
|
// copy value
|
|
cvalues[p] = x[ic]
|
|
}
|
|
}
|
|
// update ptr
|
|
cptr[bcolumns] = cindex.length
|
|
|
|
// return sparse matrix
|
|
return c
|
|
}
|
|
|
|
/**
|
|
* C = A * B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b SparseMatrix (NxC)
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxC)
|
|
*/
|
|
function _multiplySparseMatrixSparseMatrix (a, b) {
|
|
// a sparse
|
|
const avalues = a._values
|
|
const aindex = a._index
|
|
const aptr = a._ptr
|
|
const adt = a._datatype
|
|
// b sparse
|
|
const bvalues = b._values
|
|
const bindex = b._index
|
|
const bptr = b._ptr
|
|
const bdt = b._datatype
|
|
|
|
// rows & columns
|
|
const arows = a._size[0]
|
|
const bcolumns = b._size[1]
|
|
// flag indicating both matrices (a & b) contain data
|
|
const values = avalues && bvalues
|
|
|
|
// datatype
|
|
let dt
|
|
// addScalar signature to use
|
|
let af = addScalar
|
|
// multiplyScalar signature to use
|
|
let mf = multiplyScalar
|
|
|
|
// process data types
|
|
if (adt && bdt && adt === bdt && typeof adt === 'string') {
|
|
// datatype
|
|
dt = adt
|
|
// find signatures that matches (dt, dt)
|
|
af = typed.find(addScalar, [dt, dt])
|
|
mf = typed.find(multiplyScalar, [dt, dt])
|
|
}
|
|
|
|
// result
|
|
const cvalues = values ? [] : undefined
|
|
const cindex = []
|
|
const cptr = []
|
|
// c matrix
|
|
const c = a.createSparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [arows, bcolumns],
|
|
datatype: dt
|
|
})
|
|
|
|
// workspace
|
|
const x = values ? [] : undefined
|
|
// vector with marks indicating a value x[i] exists in a given column
|
|
const w = []
|
|
// variables
|
|
let ka, ka0, ka1, kb, kb0, kb1, ia, ib
|
|
// loop b columns
|
|
for (let jb = 0; jb < bcolumns; jb++) {
|
|
// update ptr
|
|
cptr[jb] = cindex.length
|
|
// mark in workspace for current column
|
|
const mark = jb + 1
|
|
// B values & index in j
|
|
for (kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) {
|
|
// b row
|
|
ib = bindex[kb]
|
|
// check we need to process values
|
|
if (values) {
|
|
// loop values in a[:,ib]
|
|
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
|
// row
|
|
ia = aindex[ka]
|
|
// check value exists in current j
|
|
if (w[ia] !== mark) {
|
|
// ia is new entry in j
|
|
w[ia] = mark
|
|
// add i to pattern of C
|
|
cindex.push(ia)
|
|
// x(ia) = A
|
|
x[ia] = mf(bvalues[kb], avalues[ka])
|
|
} else {
|
|
// i exists in C already
|
|
x[ia] = af(x[ia], mf(bvalues[kb], avalues[ka]))
|
|
}
|
|
}
|
|
} else {
|
|
// loop values in a[:,ib]
|
|
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
|
|
// row
|
|
ia = aindex[ka]
|
|
// check value exists in current j
|
|
if (w[ia] !== mark) {
|
|
// ia is new entry in j
|
|
w[ia] = mark
|
|
// add i to pattern of C
|
|
cindex.push(ia)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// check we need to process matrix values (pattern matrix)
|
|
if (values) {
|
|
// copy values from x to column jb of c
|
|
for (let p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
|
|
// row
|
|
const ic = cindex[p]
|
|
// copy value
|
|
cvalues[p] = x[ic]
|
|
}
|
|
}
|
|
}
|
|
// update ptr
|
|
cptr[bcolumns] = cindex.length
|
|
|
|
// return sparse matrix
|
|
return c
|
|
}
|
|
|
|
/**
|
|
* Multiply two or more values, `x * y`.
|
|
* For matrices, the matrix product is calculated.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.multiply(x, y)
|
|
* math.multiply(x, y, z, ...)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.multiply(4, 5.2) // returns number 20.8
|
|
* math.multiply(2, 3, 4) // returns number 24
|
|
*
|
|
* const a = math.complex(2, 3)
|
|
* const b = math.complex(4, 1)
|
|
* math.multiply(a, b) // returns Complex 5 + 14i
|
|
*
|
|
* const c = [[1, 2], [4, 3]]
|
|
* const d = [[1, 2, 3], [3, -4, 7]]
|
|
* math.multiply(c, d) // returns Array [[7, -6, 17], [13, -4, 33]]
|
|
*
|
|
* const e = math.unit('2.1 km')
|
|
* math.multiply(3, e) // returns Unit 6.3 km
|
|
*
|
|
* See also:
|
|
*
|
|
* divide, prod, cross, dot
|
|
*
|
|
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} x First value to multiply
|
|
* @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} y Second value to multiply
|
|
* @return {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
|
|
*/
|
|
return typed(name, extend({
|
|
// we extend the signatures of multiplyScalar with signatures dealing with matrices
|
|
|
|
'Array, Array': function (x, y) {
|
|
// check dimensions
|
|
_validateMatrixDimensions(arraySize(x), arraySize(y))
|
|
|
|
// use dense matrix implementation
|
|
const m = this(matrix(x), matrix(y))
|
|
// return array or scalar
|
|
return isMatrix(m) ? m.valueOf() : m
|
|
},
|
|
|
|
'Matrix, Matrix': function (x, y) {
|
|
// dimensions
|
|
const xsize = x.size()
|
|
const ysize = y.size()
|
|
|
|
// check dimensions
|
|
_validateMatrixDimensions(xsize, ysize)
|
|
|
|
// process dimensions
|
|
if (xsize.length === 1) {
|
|
// process y dimensions
|
|
if (ysize.length === 1) {
|
|
// Vector * Vector
|
|
return _multiplyVectorVector(x, y, xsize[0])
|
|
}
|
|
// Vector * Matrix
|
|
return _multiplyVectorMatrix(x, y)
|
|
}
|
|
// process y dimensions
|
|
if (ysize.length === 1) {
|
|
// Matrix * Vector
|
|
return _multiplyMatrixVector(x, y)
|
|
}
|
|
// Matrix * Matrix
|
|
return _multiplyMatrixMatrix(x, y)
|
|
},
|
|
|
|
'Matrix, Array': function (x, y) {
|
|
// use Matrix * Matrix implementation
|
|
return this(x, matrix(y))
|
|
},
|
|
|
|
'Array, Matrix': function (x, y) {
|
|
// use Matrix * Matrix implementation
|
|
return this(matrix(x, y.storage()), y)
|
|
},
|
|
|
|
'SparseMatrix, any': function (x, y) {
|
|
return algorithm11(x, y, multiplyScalar, false)
|
|
},
|
|
|
|
'DenseMatrix, any': function (x, y) {
|
|
return algorithm14(x, y, multiplyScalar, false)
|
|
},
|
|
|
|
'any, SparseMatrix': function (x, y) {
|
|
return algorithm11(y, x, multiplyScalar, true)
|
|
},
|
|
|
|
'any, DenseMatrix': function (x, y) {
|
|
return algorithm14(y, x, multiplyScalar, true)
|
|
},
|
|
|
|
'Array, any': function (x, y) {
|
|
// use matrix implementation
|
|
return algorithm14(matrix(x), y, multiplyScalar, false).valueOf()
|
|
},
|
|
|
|
'any, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return algorithm14(matrix(y), x, multiplyScalar, true).valueOf()
|
|
},
|
|
|
|
'any, any': multiplyScalar,
|
|
|
|
'any, any, ...any': function (x, y, rest) {
|
|
let result = this(x, y)
|
|
|
|
for (let i = 0; i < rest.length; i++) {
|
|
result = this(result, rest[i])
|
|
}
|
|
|
|
return result
|
|
}
|
|
}, multiplyScalar.signatures))
|
|
})
|