2017-04-17 20:38:53 +02:00

260 lines
7.2 KiB
JavaScript

'use strict';
function factory (type, config, load, typed) {
var matrix = load(require('../../../type/matrix/function/matrix'));
var zeros = load(require('../../matrix/zeros'));
var eye = load(require('../../matrix/eye'));
var clone = load(require('../../utils/clone'));
var isZero = load(require('../../utils/isZero'));
var isPositive = load(require('../../utils/isPositive'));
var unequal = load(require('../../relational/unequal'));
var abs = load(require('../../arithmetic/abs'));
var sign = load(require('../../arithmetic/sign'));
var sqrt = load(require('../../arithmetic/sqrt'));
var conj = load(require('../../complex/conj'));
var unaryMinus = load(require('../../arithmetic/unaryMinus'));
var addScalar = load(require('../../arithmetic/addScalar'));
var divideScalar = load(require('../../arithmetic/divideScalar'));
var multiplyScalar = load(require('../../arithmetic/multiplyScalar'));
var subtract = load(require('../../arithmetic/subtract'));
/**
* Calculate the Matrix QR decomposition. Matrix `A` is decomposed in
* two matrices (`Q`, `R`) where `Q` is an
* orthogonal matrix and `R` is an upper triangular matrix.
*
* Syntax:
*
* math.qr(A);
*
* Example:
*
* var m = [
* [1, -1, 4],
* [1, 4, -2],
* [1, 4, 2],
* [1, -1, 0]
* ];
* var result = math.qr(m);
* // r = {
* // Q: [
* // [0.5, -0.5, 0.5],
* // [0.5, 0.5, -0.5],
* // [0.5, 0.5, 0.5],
* // [0.5, -0.5, -0.5],
* // ],
* // R: [
* // [2, 3, 2],
* // [0, 5, -2],
* // [0, 0, 4],
* // [0, 0, 0]
* // ]
* // }
*
* See also:
*
* lu
*
* @param {Matrix | Array} A A two dimensional matrix or array
* for which to get the QR decomposition.
*
* @return {{Q: Array | Matrix, R: Array | Matrix}} Q: the orthogonal
* matrix and R: the upper triangular matrix
*/
var qr = typed('qr', {
'DenseMatrix': function (m) {
return _denseQR(m);
},
'SparseMatrix': function (m) {
return _sparseQR(m);
},
'Array': function (a) {
// create dense matrix from array
var m = matrix(a);
// lup, use matrix implementation
var r = _denseQR(m);
// result
return {
Q: r.Q.valueOf(),
R: r.R.valueOf()
};
}
});
var _denseQR = function (m) {
// rows & columns (m x n)
var rows = m._size[0]; // m
var cols = m._size[1]; // n
var Q = eye([rows], 'dense');
var Qdata = Q._data;
var R = m.clone();
var Rdata = R._data;
// vars
var i, j, k;
var w = zeros([rows], '');
for (k = 0; k < Math.min(cols, rows); ++k) {
/*
* **k-th Household matrix**
*
* The matrix I - 2*v*transpose(v)
* x = first column of A
* x1 = first element of x
* alpha = x1 / |x1| * |x|
* e1 = tranpose([1, 0, 0, ...])
* u = x - alpha * e1
* v = u / |u|
*
* Household matrix = I - 2 * v * tranpose(v)
*
* * Initially Q = I and R = A.
* * Household matrix is a reflection in a plane normal to v which
* will zero out all but the top right element in R.
* * Appplying reflection to both Q and R will not change product.
* * Repeat this process on the (1,1) minor to get R as an upper
* triangular matrix.
* * Reflections leave the magnitude of the columns of Q unchanged
* so Q remains othoganal.
*
*/
var pivot = Rdata[k][k];
var sgn = unaryMinus(sign(pivot));
var conjSgn = conj(sgn);
var alphaSquared = 0;
for(i = k; i < rows; i++) {
alphaSquared = addScalar(alphaSquared, multiplyScalar(Rdata[i][k], conj(Rdata[i][k])));
}
var alpha = multiplyScalar(sgn, sqrt(alphaSquared));
if (!isZero(alpha)) {
// first element in vector u
var u1 = subtract(pivot, alpha);
// w = v * u1 / |u| (only elements k to (rows-1) are used)
w[k] = 1;
for (i = k+1; i < rows; i++) {
w[i] = divideScalar(Rdata[i][k], u1);
}
// tau = - conj(u1 / alpha)
var tau = unaryMinus(conj(divideScalar(u1, alpha)));
var s;
/*
* tau and w have been choosen so that
*
* 2 * v * tranpose(v) = tau * w * tranpose(w)
*/
/*
* -- calculate R = R - tau * w * tranpose(w) * R --
* Only do calculation with rows k to (rows-1)
* Additionally columns 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (j = k; j < cols; j++) {
s = 0.0;
// calculate jth element of [tranpose(w) * R]
for (i = k; i < rows; i++) {
s = addScalar(s, multiplyScalar(conj(w[i]), Rdata[i][j]));
}
// calculate the jth element of [tau * transpose(w) * R]
s = multiplyScalar(s, tau);
for (i = k; i < rows; i++) {
Rdata[i][j] = multiplyScalar(
subtract(Rdata[i][j], multiplyScalar(w[i], s)),
conjSgn
);
}
}
/*
* -- calculate Q = Q - tau * Q * w * transpose(w) --
* Q is a square matrix (rows x rows)
* Only do calculation with columns k to (rows-1)
* Additionally rows 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (i = 0; i < rows; i++) {
s = 0.0;
// calculate ith element of [Q * w]
for (j = k; j < rows; j++) {
s = addScalar(s, multiplyScalar(Qdata[i][j], w[j]));
}
// calculate the ith element of [tau * Q * w]
s = multiplyScalar(s, tau);
for (j = k; j < rows; ++j) {
Qdata[i][j] = divideScalar(
subtract(Qdata[i][j], multiplyScalar(s, conj(w[j]))),
conjSgn
);
}
}
}
}
// coerse almost zero elements to zero
// TODO I feel uneasy just zeroing these values
for (i = 0; i < rows; ++i) {
for (j = 0; j < i && j < cols; ++j) {
if (unequal(0, divideScalar(Rdata[i][j], 1e5))) {
throw new Error('math.qr(): unknown error - ' +
'R is not lower triangular (element (' +
i + ', ' + j + ') = ' + Rdata[i][j] + ')'
);
}
Rdata[i][j] = multiplyScalar(Rdata[i][j], 0);
}
}
// return matrices
return {
Q: Q,
R: R,
toString: function () {
return 'Q: ' + this.Q.toString() + '\nR: ' + this.R.toString();
}
};
};
var _sparseQR = function (m) {
throw new Error('qr not implemented for sparse matrices yet');
};
return qr;
}
exports.name = 'qr';
exports.factory = factory;