mathjs/lib/function/utils/partitionSelect.js

144 lines
3.8 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index');
var Matrix = math.type.Matrix;
var isNumber = util.number.isNumber;
var isInteger = util.number.isInteger;
/**
* Partition-based selection of an array or 1D matrix.
* Will find the kth smallest value, and mutates the input array.
* Currently uses Quickselect.
*
* Syntax:
*
* math.partitionSelect(x, k)
* math.partitionSelect(x, k, compare)
*
* Examples:
*
* math.partitionSelect([5, 10, 1], 2); // returns 10
* math.partitionSelect(['C', 'B', 'A', 'D'], 1); // returns 'B'
*
* function sortByLength (a, b) {
* return a.length - b.length;
* }
* math.partitionSelect(['Langdon', 'Tom', 'Sara'], 2, sortByLength); // returns 'Langdon'
*
* See also:
*
* sort
*
* @param {Matrix | Array} x A one dimensional matrix or array to sort
* @param {Number} k The kth smallest value to be retrieved; zero-based index
* @param {Function | 'asc' | 'desc'} [compare='asc']
* An optional comparator function. The function is called as
* `compare(a, b)`, and must return 1 when a > b, -1 when a < b,
* and 0 when a == b.
* @return {*} Returns the kth lowest value.
*/
math.partitionSelect = function (x, k, compare) {
var _compare;
if (arguments.length === 2) {
_compare = math.compare;
}
else if (arguments.length === 3) {
if (typeof compare === 'function') {
_compare = compare;
}
else if (compare === 'asc') {
_compare = math.compare;
}
else if (compare === 'desc') {
_compare = function (a, b) {
return -math.compare(a, b);
}
}
else {
throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](compare));
}
}
else {
throw new math.error.ArgumentsError('partitionSelect', arguments.length, 2, 3);
}
if (isNumber(k)) {
if (isInteger(k) && k >= 0) {
if (x instanceof Matrix) {
var size = x.size();
if (size.length > 1) {
throw new Error('Only one dimensional matrices supported');
}
return quickselect(x.valueOf(), k, _compare);
}
if (Array.isArray(x)) {
return quickselect(x, k, _compare);
}
throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](x));
}
throw new Error('k must be a non-negative integer');
}
throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](k));
};
/**
* Quickselect algorithm.
* Code adapted from:
* http://blog.teamleadnet.com/2012/07/quick-select-algorithm-find-kth-element.html
*
* @param {Array} arr
* @param {Number} k
* @param {Function} compare
* @private
*/
function quickselect(arr, k, compare) {
if (k >= arr.length) {
throw new Error('k out of bounds');
}
var from = 0;
var to = arr.length - 1;
// if from == to we reached the kth element
while (from < to) {
var r = from;
var w = to;
var pivot = arr[Math.floor(Math.random() * (to - from + 1)) + from];
// stop if the reader and writer meets
while (r < w) {
// arr[r] >= pivot
if (compare(arr[r], pivot) >= 0) { // put the large values at the end
var tmp = arr[w];
arr[w] = arr[r];
arr[r] = tmp;
--w;
} else { // the value is smaller than the pivot, skip
++r;
}
}
// if we stepped up (r++) we need to step one down (arr[r] > pivot)
if (compare(arr[r], pivot) > 0) {
--r;
}
// the r pointer is on the end of the first k elements
if (k <= r) {
to = r;
} else {
from = r + 1;
}
}
return arr[k];
}
};