mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
144 lines
3.8 KiB
JavaScript
144 lines
3.8 KiB
JavaScript
'use strict';
|
|
|
|
module.exports = function (math) {
|
|
var util = require('../../util/index');
|
|
var Matrix = math.type.Matrix;
|
|
|
|
var isNumber = util.number.isNumber;
|
|
var isInteger = util.number.isInteger;
|
|
|
|
/**
|
|
* Partition-based selection of an array or 1D matrix.
|
|
* Will find the kth smallest value, and mutates the input array.
|
|
* Currently uses Quickselect.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.partitionSelect(x, k)
|
|
* math.partitionSelect(x, k, compare)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.partitionSelect([5, 10, 1], 2); // returns 10
|
|
* math.partitionSelect(['C', 'B', 'A', 'D'], 1); // returns 'B'
|
|
*
|
|
* function sortByLength (a, b) {
|
|
* return a.length - b.length;
|
|
* }
|
|
* math.partitionSelect(['Langdon', 'Tom', 'Sara'], 2, sortByLength); // returns 'Langdon'
|
|
*
|
|
* See also:
|
|
*
|
|
* sort
|
|
*
|
|
* @param {Matrix | Array} x A one dimensional matrix or array to sort
|
|
* @param {Number} k The kth smallest value to be retrieved; zero-based index
|
|
* @param {Function | 'asc' | 'desc'} [compare='asc']
|
|
* An optional comparator function. The function is called as
|
|
* `compare(a, b)`, and must return 1 when a > b, -1 when a < b,
|
|
* and 0 when a == b.
|
|
* @return {*} Returns the kth lowest value.
|
|
*/
|
|
math.partitionSelect = function (x, k, compare) {
|
|
var _compare;
|
|
|
|
if (arguments.length === 2) {
|
|
_compare = math.compare;
|
|
}
|
|
else if (arguments.length === 3) {
|
|
if (typeof compare === 'function') {
|
|
_compare = compare;
|
|
}
|
|
else if (compare === 'asc') {
|
|
_compare = math.compare;
|
|
}
|
|
else if (compare === 'desc') {
|
|
_compare = function (a, b) {
|
|
return -math.compare(a, b);
|
|
}
|
|
}
|
|
else {
|
|
throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](compare));
|
|
}
|
|
}
|
|
else {
|
|
throw new math.error.ArgumentsError('partitionSelect', arguments.length, 2, 3);
|
|
}
|
|
|
|
if (isNumber(k)) {
|
|
if (isInteger(k) && k >= 0) {
|
|
if (x instanceof Matrix) {
|
|
var size = x.size();
|
|
if (size.length > 1) {
|
|
throw new Error('Only one dimensional matrices supported');
|
|
}
|
|
return quickselect(x.valueOf(), k, _compare);
|
|
}
|
|
|
|
if (Array.isArray(x)) {
|
|
return quickselect(x, k, _compare);
|
|
}
|
|
|
|
throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](x));
|
|
}
|
|
|
|
throw new Error('k must be a non-negative integer');
|
|
}
|
|
|
|
throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](k));
|
|
};
|
|
|
|
/**
|
|
* Quickselect algorithm.
|
|
* Code adapted from:
|
|
* http://blog.teamleadnet.com/2012/07/quick-select-algorithm-find-kth-element.html
|
|
*
|
|
* @param {Array} arr
|
|
* @param {Number} k
|
|
* @param {Function} compare
|
|
* @private
|
|
*/
|
|
function quickselect(arr, k, compare) {
|
|
if (k >= arr.length) {
|
|
throw new Error('k out of bounds');
|
|
}
|
|
|
|
var from = 0;
|
|
var to = arr.length - 1;
|
|
|
|
// if from == to we reached the kth element
|
|
while (from < to) {
|
|
var r = from;
|
|
var w = to;
|
|
var pivot = arr[Math.floor(Math.random() * (to - from + 1)) + from];
|
|
|
|
// stop if the reader and writer meets
|
|
while (r < w) {
|
|
// arr[r] >= pivot
|
|
if (compare(arr[r], pivot) >= 0) { // put the large values at the end
|
|
var tmp = arr[w];
|
|
arr[w] = arr[r];
|
|
arr[r] = tmp;
|
|
--w;
|
|
} else { // the value is smaller than the pivot, skip
|
|
++r;
|
|
}
|
|
}
|
|
|
|
// if we stepped up (r++) we need to step one down (arr[r] > pivot)
|
|
if (compare(arr[r], pivot) > 0) {
|
|
--r;
|
|
}
|
|
|
|
// the r pointer is on the end of the first k elements
|
|
if (k <= r) {
|
|
to = r;
|
|
} else {
|
|
from = r + 1;
|
|
}
|
|
}
|
|
|
|
return arr[k];
|
|
}
|
|
};
|