mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
158 lines
4.5 KiB
JavaScript
158 lines
4.5 KiB
JavaScript
import assert from 'assert'
|
|
import math from '../../../../src/bundleAny'
|
|
import _ from 'underscore'
|
|
|
|
const math2 = math.create({ randomSeed: 'test' })
|
|
const random = math2.random
|
|
const Matrix = math2.Matrix
|
|
|
|
describe('random', function () {
|
|
it('should have a function random', function () {
|
|
assert.strictEqual(typeof math.random, 'function')
|
|
})
|
|
|
|
it('should pick uniformly distributed numbers in [0, 1]', function () {
|
|
const picked = []
|
|
|
|
_.times(1000, function () {
|
|
picked.push(random())
|
|
})
|
|
assertUniformDistribution(picked, 0, 1)
|
|
})
|
|
|
|
it('should pick uniformly distributed numbers in [min, max]', function () {
|
|
const picked = []
|
|
|
|
_.times(1000, function () {
|
|
picked.push(random(-10, 10))
|
|
})
|
|
assertUniformDistribution(picked, -10, 10)
|
|
})
|
|
|
|
it('should pick uniformly distributed random array, with elements in [0, 1]', function () {
|
|
const picked = []
|
|
const matrices = []
|
|
const size = [2, 3, 4]
|
|
|
|
_.times(100, function () {
|
|
matrices.push(random(size))
|
|
})
|
|
|
|
// Collect all values in one array
|
|
matrices.forEach(function (matrix) {
|
|
assert(Array.isArray(matrix))
|
|
assert.deepStrictEqual(math.size(matrix), size)
|
|
math.forEach(matrix, function (val) {
|
|
picked.push(val)
|
|
})
|
|
})
|
|
assert.strictEqual(picked.length, 2 * 3 * 4 * 100)
|
|
|
|
assertUniformDistribution(picked, 0, 1)
|
|
})
|
|
|
|
it('should pick uniformly distributed random array, with elements in [0, max]', function () {
|
|
const picked = []
|
|
const matrices = []
|
|
const size = [2, 3, 4]
|
|
|
|
_.times(100, function () {
|
|
matrices.push(random(size, 8))
|
|
})
|
|
|
|
// Collect all values in one array
|
|
matrices.forEach(function (matrix) {
|
|
assert(Array.isArray(matrix))
|
|
assert.deepStrictEqual(math.size(matrix), size)
|
|
math.forEach(matrix, function (val) {
|
|
picked.push(val)
|
|
})
|
|
})
|
|
assert.strictEqual(picked.length, 2 * 3 * 4 * 100)
|
|
|
|
assertUniformDistribution(picked, 0, 8)
|
|
})
|
|
|
|
it('should pick uniformly distributed random matrix, with elements in [0, 1]', function () {
|
|
const picked = []
|
|
const matrices = []
|
|
const size = math2.matrix([2, 3, 4])
|
|
|
|
_.times(100, function () {
|
|
matrices.push(random(size))
|
|
})
|
|
|
|
// Collect all values in one array
|
|
matrices.forEach(function (matrix) {
|
|
assert(matrix instanceof Matrix)
|
|
assert.deepStrictEqual(matrix.size(), size.valueOf())
|
|
matrix.forEach(function (val) {
|
|
picked.push(val)
|
|
})
|
|
})
|
|
assert.strictEqual(picked.length, 2 * 3 * 4 * 100)
|
|
|
|
assertUniformDistribution(picked, 0, 1)
|
|
})
|
|
|
|
it('should pick uniformly distributed random array, with elements in [min, max]', function () {
|
|
const picked = []
|
|
const matrices = []
|
|
const size = [2, 3, 4]
|
|
|
|
_.times(100, function () {
|
|
matrices.push(random(size, -103, 8))
|
|
})
|
|
|
|
// Collect all values in one array
|
|
matrices.forEach(function (matrix) {
|
|
assert.deepStrictEqual(math.size(matrix), size)
|
|
math.forEach(matrix, function (val) {
|
|
picked.push(val)
|
|
})
|
|
})
|
|
assert.strictEqual(picked.length, 2 * 3 * 4 * 100)
|
|
assertUniformDistribution(picked, -103, 8)
|
|
})
|
|
|
|
it('should throw an error if called with invalid arguments', function () {
|
|
assert.throws(function () { random(1, 2, [4, 8]) })
|
|
assert.throws(function () { random(1, 2, 3, 6) })
|
|
|
|
assert.throws(function () { random('str', 10) })
|
|
assert.throws(function () { random(math2.bignumber(-10), 10) })
|
|
})
|
|
|
|
it('should throw an error in case of wrong number of arguments', function () {
|
|
assert.throws(function () { random([2, 3], 10, 100, 12) }, /Too many arguments/)
|
|
})
|
|
|
|
it('should LaTeX random', function () {
|
|
const expression = math.parse('random(0,1)')
|
|
assert.strictEqual(expression.toTex(), '\\mathrm{random}\\left(0,1\\right)')
|
|
})
|
|
})
|
|
|
|
function assertUniformDistribution (values, min, max) {
|
|
const interval = (max - min) / 10
|
|
let count
|
|
let i
|
|
count = _.filter(values, function (val) { return val < min }).length
|
|
assert.strictEqual(count, 0)
|
|
count = _.filter(values, function (val) { return val > max }).length
|
|
assert.strictEqual(count, 0)
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
count = _.filter(values, function (val) {
|
|
return val >= (min + i * interval) && val < (min + (i + 1) * interval)
|
|
}).length
|
|
assertApproxEqual(count / values.length, 0.1, 0.02)
|
|
}
|
|
}
|
|
|
|
const assertApproxEqual = function (testVal, val, tolerance) {
|
|
const diff = Math.abs(val - testVal)
|
|
if (diff > tolerance) assert.strictEqual(testVal, val)
|
|
else assert.ok(diff <= tolerance)
|
|
}
|