'use strict'; var util = require('../../util/index'); var array = util.array; function factory (type, config, load, typed) { var matrix = load(require('../construction/matrix')); var add = load(require('./add')); var equal = load(require('../relational/equal')); var collection = load(require('../../type/collection')); var DenseMatrix = type.DenseMatrix; var CcsMatrix = type.CcsMatrix; var CrsMatrix = type.CrsMatrix; var Spa = type.Spa; /** * Multiply two values, `x * y`. The result is squeezed. * For matrices, the matrix product is calculated. * * Syntax: * * math.multiply(x, y) * * Examples: * * math.multiply(4, 5.2); // returns Number 20.8 * * var a = math.complex(2, 3); * var b = math.complex(4, 1); * math.multiply(a, b); // returns Complex 5 + 14i * * var c = [[1, 2], [4, 3]]; * var d = [[1, 2, 3], [3, -4, 7]]; * math.multiply(c, d); // returns Array [[7, -6, 17], [13, -4, 33]] * * var e = math.unit('2.1 km'); * math.multiply(3, e); // returns Unit 6.3 km * * See also: * * divide * * @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} x First value to multiply * @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} y Second value to multiply * @return {Number | BigNumber | Complex | Unit | Array | Matrix} Multiplication of `x` and `y` */ var multiply = typed('multiply', { 'number, number': function (x, y) { return x * y; }, 'BigNumber, BigNumber': function (x, y) { return x.times(y); }, 'Complex, Complex': function (x, y) { return new type.Complex( x.re * y.re - x.im * y.im, x.re * y.im + x.im * y.re ); }, 'number, Unit': function (x, y) { var res = y.clone(); res.value = (res.value === null) ? res._normalize(x) : (res.value * x); return res; }, 'Unit, number': function (x, y) { var res = x.clone(); res.value = (res.value === null) ? res._normalize(y) : (res.value * y); return res; }, 'Array, Array': function (x, y) { // check dimensions _validateMatrixDimensions(array.size(x), array.size(y)); // use dense matrix implementation var m = multiply(matrix(x), matrix(y)); // return array or scalar return m instanceof type.Matrix ? m.valueOf() : m; }, 'Matrix, Matrix': function (x, y) { // dimensions var xsize = x.size(); var ysize = y.size(); // check dimensions _validateMatrixDimensions(xsize, ysize); // process dimensions if (xsize.length === 1) { // process y dimensions if (ysize.length === 1) { // Vector * Vector return _multiplyVectorVector(x, y, xsize[0]); } // Vector * Matrix return _multiplyVectorMatrix(x, y); } // process y dimensions if (ysize.length === 1) { // Matrix * Vector return _multiplyMatrixVector(x, y); } // Matrix * Matrix return _multiplyMatrixMatrix(x, y); }, 'Matrix, Array': function (x, y) { // use Matrix * Matrix implementation return multiply(x, matrix(y)); }, 'Array, Matrix': function (x, y) { // use Matrix * Matrix implementation return multiply(matrix(x, y.storage()), y); }, 'Array, any': function (x, y) { return collection.deepMap2(x, y, multiply); }, 'Matrix, any': function (x, y) { // use matrix map, skip zeros since 0 * X = 0 return x.map(function (v) { return multiply(v, y); }, true); }, 'any, Array | Matrix': function (x, y) { // use matrix map, skip zeros since 0 * X = 0 return y.map(function (v) { return multiply(v, x); }, true); } }); var _validateMatrixDimensions = function (size1, size2) { // check left operand dimensions switch (size1.length) { case 1: // check size2 switch (size2.length) { case 1: // Vector x Vector if (size1[0] !== size2[0]) { // throw error throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length'); } break; case 2: // Vector x Matrix if (size1[0] !== size2[0]) { // throw error throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')'); } break; default: throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)'); } break; case 2: // check size2 switch (size2.length) { case 1: // Matrix x Vector if (size1[1] !== size2[0]) { // throw error throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')'); } break; case 2: // Matrix x Matrix if (size1[1] !== size2[0]) { // throw error throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')'); } break; default: throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)'); } break; default: throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)'); } }; /** * C = A * B * * @param {Matrix} a Dense Vector (N) * @param {Matrix} b Dense Vector (N) * * @return {Number} Scalar value */ var _multiplyVectorVector = function (a, b, n) { // check empty vector if (n === 0) throw new Error('Cannot multiply two empty vectors'); // a dense var adata = a._data; // b dense var bdata = b._data; // result var c = 0; // loop data for (var i = 0; i < n; i++) { // multiply and accumulate c = add(c, multiply(adata[i], bdata[i])); } return c; }; /** * C = A * B * * @param {Matrix} a Dense Vector (M) * @param {Matrix} b Matrix (MxN) * * @return {Matrix} Dense Vector (N) */ var _multiplyVectorMatrix = function (a, b) { // process storage switch (b.storage()) { case 'dense': return _multiplyVectorDenseMatrix(a, b); } throw new Error('Not implemented'); }; /** * C = A * B * * @param {Matrix} a Dense Vector (M) * @param {Matrix} b Dense Matrix (MxN) * * @return {Matrix} Dense Vector (N) */ var _multiplyVectorDenseMatrix = function (a, b) { // a dense var adata = a._data; var asize = a._size; // b dense var bdata = b._data; var bsize = b._size; // rows & columns var alength = asize[0]; var bcolumns = bsize[1]; // result var c = new Array(bcolumns); // loop matrix columns for (var j = 0; j < bcolumns; j++) { // sum var sum = 0; // loop vector for (var i = 0; i < alength; i++) { // multiply & accumulate sum = add(sum, multiply(adata[i], bdata[i][j])); } c[j] = sum; } // check we need to squeeze the result into a scalar if (bcolumns === 1) return c[0]; // return matrix return new DenseMatrix({ data: c, size: [bcolumns] }); }; /** * C = A * B * * @param {Matrix} a Matrix (MxN) * @param {Matrix} b Dense Vector (N) * * @return {Matrix} Dense Vector (M) */ var _multiplyMatrixVector = function (a, b) { // process storage switch (a.storage()) { case 'dense': return _multiplyDenseMatrixVector(a, b); case 'ccs': return _multiplyCcsMatrixVector(a, b); case 'crs': return _multiplyCrsMatrixVector(a, b); } }; /** * C = A * B * * @param {Matrix} a Matrix (MxN) * @param {Matrix} b Matrix (NxC) * * @return {Matrix} Matrix (MxC) */ var _multiplyMatrixMatrix = function (a, b) { // process storage switch (a.storage()) { case 'dense': // process storage switch (b.storage()) { case 'dense': return _multiplyDenseMatrixDenseMatrix(a, b); case 'ccs': return _multiplyDenseMatrixCcsMatrix(a, b); case 'crs': return _multiplyDenseMatrixCrsMatrix(a, b); } break; case 'ccs': // process storage switch (b.storage()) { case 'dense': return _multiplyCcsMatrixDenseMatrix(a, b); case 'ccs': return _multiplyCcsMatrixCcsMatrix(a, b); case 'crs': return _multiplyCcsMatrixCrsMatrix(a, b); } break; case 'crs': // process storage switch (b.storage()) { case 'dense': return _multiplyCrsMatrixDenseMatrix(a, b); case 'ccs': return _multiplyCrsMatrixCcsMatrix(a, b); case 'crs': return _multiplyCrsMatrixCrsMatrix(a, b); } break; } }; /** * C = A * B * * @param {Matrix} a DenseMatrix (MxN) * @param {Matrix} b Dense Vector (N) * * @return {Matrix} Dense Vector (M) */ var _multiplyDenseMatrixVector = function (a, b) { // a dense var adata = a._data; var asize = a._size; // b dense var bdata = b._data; // rows & columns var arows = asize[0]; var acolumns = asize[1]; // result var c = new Array(arows); // loop matrix a rows for (var i = 0; i < arows; i++) { // current row var row = adata[i]; // sum var sum = 0; // loop matrix a columns for (var j = 0; j < acolumns; j++) { // multiply & accumulate sum = add(sum, multiply(row[j], bdata[j])); } c[i] = sum; } // check we need to squeeze the result into a scalar if (arows === 1) return c[0]; // return matrix return new DenseMatrix({ data: c, size: [arows] }); }; /** * C = A * B * * @param {Matrix} a DenseMatrix (MxN) * @param {Matrix} b DenseMatrix (NxC) * * @return {Matrix} DenseMatrix (MxC) */ var _multiplyDenseMatrixDenseMatrix = function (a, b) { // a dense var adata = a._data; var asize = a._size; // b dense var bdata = b._data; var bsize = b._size; // rows & columns var arows = asize[0]; var acolumns = asize[1]; var bcolumns = bsize[1]; // result var c = new Array(arows); // loop matrix a rows for (var i = 0; i < arows; i++) { // current row var row = adata[i]; // initialize row array c[i] = new Array(bcolumns); // loop matrix b columns for (var j = 0; j < bcolumns; j++) { // sum var sum = 0; // loop matrix a columns for (var x = 0; x < acolumns; x++) { // multiply & accumulate sum = add(sum, multiply(row[x], bdata[x][j])); } c[i][j] = sum; } } // check we need to squeeze the result into a scalar if (arows === 1 && bcolumns === 1) return c[0][0]; // return matrix return new DenseMatrix({ data: c, size: [arows, bcolumns] }); }; /** * C = A * B * * @param {Matrix} a DenseMatrix (MxN) * @param {Matrix} b CcsMatrix (NxC) * * @return {Matrix} DenseMatrix (MxC) */ var _multiplyDenseMatrixCcsMatrix = function (a, b) { // a dense var adata = a._data; var asize = a._size; // b ccs var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; var bsize = b._size; // rows & columns var arows = asize[0]; var bcolumns = bsize[1]; // result var c = new Array(arows); // loop a rows for (var i = 0; i < arows; i++) { // initialize row c[i] = new Array(bcolumns); // current row var row = adata[i]; // loop b columns for (var j = 0; j < bcolumns; j++) { // sum var sum = 0; // values & index in column j for (var k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // row var x = bindex[k]; // multiply & accumulate sum = add(sum, multiply(row[x], bvalues[k])); } c[i][j] = sum; } } // check we need to squeeze the result into a scalar if (arows === 1 && bcolumns === 1) return c[0][0]; // return matrix return new DenseMatrix({ data: c, size: [arows, bcolumns] }); }; /** * C = A * B * * @param {Matrix} a DenseMatrix (MxN) * @param {Matrix} b CrsMatrix (NxC) * * @return {Matrix} DenseMatrix (MxC) */ var _multiplyDenseMatrixCrsMatrix = function (a, b) { // a dense var adata = a._data; var asize = a._size; // b crs var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; var bsize = b._size; // rows & columns var arows = asize[0]; var acolumns = asize[1]; var bcolumns = bsize[1]; // result var c = new Array(arows); // loop a rows for (var i = 0; i < arows; i++) { // current row var row = adata[i]; // initialize row var cr = new Array(bcolumns); for (var z = 0; z < bcolumns; z++) cr[z] = 0; // loop a columns for (var j = 0; j < acolumns; j++) { // check value A[i, j] != 0, avoid loops if (!equal(row[j], 0)) { // values and index @ row j for (var k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) { // b column var x = bindex[k]; // multiply & accumulate cr[x] = add(cr[x], multiply(row[j], bvalues[k])); } } } // set row c[i] = cr; } // check we need to squeeze the result into a scalar if (arows === 1 && bcolumns === 1) return c[0][0]; // return matrix return new DenseMatrix({ data: c, size: [arows, bcolumns] }); }; /** * C = A * B * * @param {Matrix} a CcsMatrix (MxN) * @param {Matrix} b Dense Vector (N) * * @return {Matrix} CcsMatrix (M, 1) */ var _multiplyCcsMatrixVector = function (a, b) { // a ccs var avalues = a._values; var aindex = a._index; var aptr = a._ptr; // b dense var bdata = b._data; // rows & columns var arows = a._size[0]; var brows = b._size[0]; // result var cvalues = []; var cindex = []; var cptr = []; // create sparse accumulator var spa = new Spa(arows); // update ptr cptr.push(0); // rows in b for (var ib = 0; ib < brows; ib++) { // b[ib] var vbi = bdata[ib]; // check b[ib] != 0, avoid loops if (!equal(vbi, 0)) { // A values & index in ib column for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) { // a row var ia = aindex[ka]; // accumulate spa.accumulate(ia, multiply(vbi, avalues[ka])); } } } // process spa spa.forEach(0, arows - 1, function (x, v) { cindex.push(x); cvalues.push(v); }); // update ptr cptr.push(cvalues.length); // check we need to squeeze the result into a scalar if (arows === 1) return cvalues.length === 1 ? cvalues[0] : 0; // return CCS matrix return new CcsMatrix({ values : cvalues, index: cindex, ptr: cptr, size: [arows, 1] }); }; /** * C = A * B * * @param {Matrix} a CcsMatrix (MxN) * @param {Matrix} b DenseMatrix (NxC) * * @return {Matrix} CcsMatrix (MxC) */ var _multiplyCcsMatrixDenseMatrix = function (a, b) { // a ccs var avalues = a._values; var aindex = a._index; var aptr = a._ptr; // b dense var bdata = b._data; // rows & columns var arows = a._size[0]; var brows = b._size[0]; var bcolumns = b._size[1]; // result var cvalues = []; var cindex = []; var cptr = []; // process column var processColumn = function (j, v) { cindex.push(j); cvalues.push(v); }; // loop b columns for (var jb = 0; jb < bcolumns; jb++) { // update ptr cptr.push(cvalues.length); // create sparse accumulator var spa = new Spa(arows); // rows in jb for (var ib = 0; ib < brows; ib++) { // b[ib, jb] var vbij = bdata[ib][jb]; // check b[ib, jb] != 0, avoid loops if (!equal(vbij, 0)) { // A values & index in ib column for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) { // a row var ia = aindex[ka]; // accumulate spa.accumulate(ia, multiply(vbij, avalues[ka])); } } } // process sparse accumulator spa.forEach(0, arows - 1, processColumn); } // update ptr cptr.push(cvalues.length); // check we need to squeeze the result into a scalar if (arows === 1 && bcolumns === 1) return cvalues.length === 1 ? cvalues[0] : 0; // return CCS matrix return new CcsMatrix({ values : cvalues, index: cindex, ptr: cptr, size: [arows, bcolumns] }); }; /** * C = A * B * * @param {Matrix} a CcsMatrix (MxN) * @param {Matrix} b CcsMatrix (NxC) * * @return {Matrix} CcsMatrix (MxC) */ var _multiplyCcsMatrixCcsMatrix = function (a, b) { // a ccs var avalues = a._values; var aindex = a._index; var aptr = a._ptr; // b ccs var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; // rows & columns var arows = a._size[0]; var bcolumns = b._size[1]; // result var cvalues = []; var cindex = []; var cptr = []; // process column in C var processColumn = function (i, v) { cindex.push(i); cvalues.push(v); }; // loop b columns for (var jb = 0; jb < bcolumns; jb++) { // update ptr cptr.push(cvalues.length); // create sparse accumulator var spa = new Spa(arows); // B values & index in j for (var kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) { // b row var ib = bindex[kb]; // A values & index in ib column for (var ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) { // a row var ia = aindex[ka]; // accumulate spa.accumulate(ia, multiply(bvalues[kb], avalues[ka])); } } // process sparse accumulator spa.forEach(0, arows - 1, processColumn); } // update ptr cptr.push(cvalues.length); // check we need to squeeze the result into a scalar if (arows === 1 && bcolumns === 1) return cvalues.length === 1 ? cvalues[0] : 0; // return CCS matrix return new CcsMatrix({ values : cvalues, index: cindex, ptr: cptr, size: [arows, bcolumns] }); }; /** * C = A * B * * @param {Matrix} a CcsMatrix (MxN) * @param {Matrix} b CrsMatrix (NxC) * * @return {Matrix} CcsMatrix (MxC) */ var _multiplyCcsMatrixCrsMatrix = function (a, b) { // it is faster to convert a matrix from CRS to CCS than iterate a CRS by column! return _multiplyCcsMatrixCcsMatrix(a, new CcsMatrix(b)); }; /** * C = A * B * * @param {Matrix} a CrsMatrix (MxN) * @param {Matrix} b Dense Vector (N) * * @return {Matrix} CrsMatrix (M, 1) */ var _multiplyCrsMatrixVector = function (a, b) { // a crs var avalues = a._values; var aindex = a._index; var aptr = a._ptr; // b dense var bdata = b._data; // rows & columns var arows = a._size[0]; // result var cvalues = []; var cindex = []; var cptr = []; // rows in a for (var ia = 0; ia < arows; ia++) { // update ptr cptr.push(cvalues.length); // sum var sum = 0; // A values & index in ia column for (var ka0 = aptr[ia], ka1 = aptr[ia + 1], ka = ka0; ka < ka1; ka++) { // column var ja = aindex[ka]; // accumulate sum = add(sum, multiply(avalues[ka], bdata[ja])); } // check we have a value for ia if (!equal(sum, 0)) { cvalues.push(sum); cindex.push(ia); } } // update ptr cptr.push(cvalues.length); // check we need to squeeze the result into a scalar if (arows === 1) return cvalues.length === 1 ? cvalues[0] : 0; // return CRS matrix return new CrsMatrix({ values : cvalues, index: cindex, ptr: cptr, size: [arows, 1] }); }; /** * C = A * B * * @param {Matrix} a CrsMatrix (MxN) * @param {Matrix} b DenseMatrix (NxC) * * @return {Matrix} CrsMatrix (MxC) */ var _multiplyCrsMatrixDenseMatrix = function (a, b) { // a crs var avalues = a._values; var aindex = a._index; var aptr = a._ptr; // b dense var bdata = b._data; // rows & columns var arows = a._size[0]; var bcolumns = b._size[1]; // result var cvalues = []; var cindex = []; var cptr = []; // function to process c[i, j] var processRow = function (j, v) { cindex.push(j); cvalues.push(v); }; // loop a rows for (var ia = 0; ia < arows; ia++) { // update ptr cptr.push(cvalues.length); // create sparse accumulator var spa = new Spa(bcolumns); // loop b columns for (var jb = 0; jb < bcolumns; jb++) { // A values & index in ia row for (var ka0 = aptr[ia], ka1 = aptr[ia + 1], ka = ka0; ka < ka1; ka++) { // a column var ja = aindex[ka]; // b[ja, jb] var vb = bdata[ja][jb]; // check b value if (!equal(vb, 0)) { // accumulate value for column jb spa.accumulate(jb, multiply(vb, avalues[ka])); } } } // process values in row ia spa.forEach(0, bcolumns - 1, processRow); } // update ptr cptr.push(cvalues.length); // check we need to squeeze the result into a scalar if (arows === 1 && bcolumns === 1) return cvalues.length === 1 ? cvalues[0] : 0; // return CRS matrix return new CrsMatrix({ values : cvalues, index: cindex, ptr: cptr, size: [arows, bcolumns] }); }; /** * C = A * B * * @param {Matrix} a CrsMatrix (MxN) * @param {Matrix} b CrsMatrix (NxC) * * @return {Matrix} CrsMatrix (MxC) */ var _multiplyCrsMatrixCrsMatrix = function (a, b) { // a crs var avalues = a._values; var aindex = a._index; var aptr = a._ptr; // b crs var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; // rows & columns var arows = a._size[0]; var bcolumns = b._size[1]; // result var cvalues = []; var cindex = []; var cptr = []; // function to process c[i, j] var processRow = function (j, v) { cindex.push(j); cvalues.push(v); }; // loop a rows for (var ia = 0; ia < arows; ia++) { // update ptr cptr.push(cvalues.length); // initialize sparse accumulator var spa = new Spa(bcolumns); // a values & index in ia for (var ka0 = aptr[ia], ka1 = aptr[ia + 1], ka = ka0; ka < ka1; ka++) { // a column var ja = aindex[ka]; // b values & index in row ja for (var kb0 = bptr[ja], kb1 = bptr[ja + 1], kb = kb0; kb < kb1; kb++) { // b column var jb = bindex[kb]; // accumulate spa.accumulate(jb, multiply(avalues[ka], bvalues[kb])); } } // process sparse accumulator spa.forEach(0, bcolumns - 1, processRow); } // update ptr cptr.push(cvalues.length); // check we need to squeeze the result into a scalar if (arows === 1 && bcolumns === 1) return cvalues.length === 1 ? cvalues[0] : 0; // return CRS matrix return new CrsMatrix({ values : cvalues, index: cindex, ptr: cptr, size: [arows, bcolumns] }); }; /** * C = A * B' * * @param {Matrix} a CrsMatrix (MxN) * @param {Matrix} b CrsMatrix (CxN) * * @return {Matrix} CrsMatrix (MxC) */ var _multiplyCrsMatrixCrsMatrixT = function (a, b) { // a crs var avalues = a._values; var aindex = a._index; var aptr = a._ptr; // b crs var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; // rows & columns var arows = a._size[0]; var brows = b._size[0]; // result var cvalues = []; var cindex = []; var cptr = []; // function to process c[i, j] var processRow = function (j, v) { cindex.push(j); cvalues.push(v); }; // loop a rows for (var ia = 0; ia < arows; ia++) { // update ptr cptr.push(cvalues.length); // initialize sparse accumulator var spa = new Spa(brows); // loop b rows for (var ib = 0; ib < brows; ib++) { // a values & index in ia for (var ka0 = aptr[ia], ka1 = aptr[ia + 1], ka = ka0; ka < ka1; ka++) { // a column var ja = aindex[ka]; // b values & index in ib for (var kb0 = bptr[ib], kb1 = bptr[ib + 1], kb = kb0; kb < kb1; kb++) { // b column var jb = bindex[kb]; // check columns are the same if (ja === jb) { // accumulate spa.accumulate(ib, multiply(avalues[ka], bvalues[kb])); // exit loop break; } else if (jb > ja) { // exit loop break; } } } } // process sparse accumulator spa.forEach(0, brows - 1, processRow); } // update ptr cptr.push(cvalues.length); // check we need to squeeze the result into a scalar if (arows === 1 && brows === 1) return cvalues.length === 1 ? cvalues[0] : 0; // return CRS matrix return new CrsMatrix({ values : cvalues, index: cindex, ptr: cptr, size: [arows, brows] }); }; /** * C = A * B * * @param {Matrix} a CrsMatrix (MxN) * @param {Matrix} b CcsMatrix (NxC) * * @return {Matrix} CrsMatrix (MxC) */ var _multiplyCrsMatrixCcsMatrix = function (a, b) { // transpose of a ccs matrix is a crs matrix with the same data var crs = new CrsMatrix({ values: b._values, index: b._index, ptr: b._ptr, size: [b._size[1], b._size[0]] }); // use A * B' implementation return _multiplyCrsMatrixCrsMatrixT(a, crs); }; return multiply; } exports.name = 'multiply'; exports.factory = factory;