'use strict'; module.exports = function(math) { var util = require('../../util/index'), BigNumber = math.type.BigNumber, Complex = require('../../type/Complex'), Matrix = require('../../type/Matrix'), Unit = require('../../type/Unit'), collection = require('../../type/collection'), array = util.array, isNumber = util.number.isNumber, isBoolean = util['boolean'].isBoolean, isComplex = Complex.isComplex, isArray = Array.isArray, isUnit = Unit.isUnit; /** * Multiply two values, `x * y`. The result is squeezed. * For matrices, the matrix product is calculated. * * Syntax: * * math.multiply(x, y) * * Examples: * * math.multiply(4, 5.2); // returns Number 20.8 * * var a = math.complex(2, 3); * var b = math.complex(4, 1); * math.multiply(a, b); // returns Complex 5 + 14i * * var c = [[1, 2], [4, 3]]; * var d = [[1, 2, 3], [3, -4, 7]]; * math.multiply(c, d); // returns Array [[7, -6, 17], [13, -4, 33]] * * var e = math.unit('2.1 km'); * math.multiply(3, e); // returns Unit 6.3 km * * See also: * * divide * * @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} x First value to multiply * @param {Number | BigNumber | Boolean | Complex | Unit | Array | Matrix | null} y Second value to multiply * @return {Number | BigNumber | Complex | Unit | Array | Matrix} Multiplication of `x` and `y` */ math.multiply = function multiply(x, y) { var res; if (arguments.length != 2) { throw new math.error.ArgumentsError('multiply', arguments.length, 2); } if (isNumber(x)) { if (isNumber(y)) { // number * number return x * y; } else if (isComplex(y)) { // number * complex return _multiplyComplex (new Complex(x, 0), y); } else if (isUnit(y)) { res = y.clone(); res.value = (res.value === null) ? res._normalize(x) : (res.value * x); return res; } } if (isComplex(x)) { if (isNumber(y)) { // complex * number return _multiplyComplex (x, new Complex(y, 0)); } else if (isComplex(y)) { // complex * complex return _multiplyComplex (x, y); } } if (x instanceof BigNumber) { // try to convert to big number if (isNumber(y)) { y = BigNumber.convert(y); } else if (isBoolean(y) || y === null) { y = new BigNumber(y ? 1 : 0); } if (y instanceof BigNumber) { return x.times(y); } // downgrade to Number return multiply(x.toNumber(), y); } if (y instanceof BigNumber) { // try to convert to big number if (isNumber(x)) { x = BigNumber.convert(x); } else if (isBoolean(x) || x === null) { x = new BigNumber(x ? 1 : 0); } if (x instanceof BigNumber) { return x.times(y) } // downgrade to Number return multiply(x, y.toNumber()); } if (isUnit(x)) { if (isNumber(y)) { res = x.clone(); res.value = (res.value === null) ? res._normalize(y) : (res.value * y); return res; } } if (isArray(x)) { if (isArray(y)) { // array * array var sizeX = array.size(x); var sizeY = array.size(y); if (sizeX.length == 1) { if (sizeY.length == 1) { // vector * vector if (sizeX[0] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Length of A must match length of B ' + '(A is ' + sizeX[0] + ', B is ' + sizeY[0] + ', ' + sizeX[0] + ' != ' + sizeY[0] + ')'); } return _multiplyVectorVector(x, y); } else if (sizeY.length == 2) { // vector * matrix if (sizeX[0] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Length of A must match rows of B ' + '(A is ' + sizeX[0] + ', B is ' + sizeY[0] + 'x' + sizeY[1] + ', ' + sizeX[0] + ' != ' + sizeY[0] + ')'); } return _multiplyVectorMatrix(x, y); } else { throw new Error('Can only multiply a 1 or 2 dimensional matrix ' + '(B has ' + sizeY.length + ' dimensions)'); } } else if (sizeX.length == 2) { if (sizeY.length == 1) { // matrix * vector if (sizeX[1] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Columns of A must match length of B ' + '(A is ' + sizeX[0] + 'x' + sizeX[0] + ', B is ' + sizeY[0] + ', ' + sizeX[1] + ' != ' + sizeY[0] + ')'); } return _multiplyMatrixVector(x, y); } else if (sizeY.length == 2) { // matrix * matrix if (sizeX[1] != sizeY[0]) { throw new RangeError('Dimension mismatch in multiplication. ' + 'Columns of A must match rows of B ' + '(A is ' + sizeX[0] + 'x' + sizeX[1] + ', B is ' + sizeY[0] + 'x' + sizeY[1] + ', ' + sizeX[1] + ' != ' + sizeY[0] + ')'); } return _multiplyMatrixMatrix(x, y); } else { throw new Error('Can only multiply a 1 or 2 dimensional matrix ' + '(B has ' + sizeY.length + ' dimensions)'); } } else { throw new Error('Can only multiply a 1 or 2 dimensional matrix ' + '(A has ' + sizeX.length + ' dimensions)'); } } else if (y instanceof Matrix) { // array * matrix res = multiply(x, y.valueOf()); return isArray(res) ? new Matrix(res) : res; } else { // array * scalar return collection.deepMap2(x, y, multiply); } } if (x instanceof Matrix) { if (y instanceof Matrix) { // matrix * matrix res = multiply(x.valueOf(), y.valueOf()); return isArray(res) ? new Matrix(res) : res; } else { // matrix * array // matrix * scalar res = multiply(x.valueOf(), y); return isArray(res) ? new Matrix(res) : res; } } if (isArray(y)) { // scalar * array return collection.deepMap2(x, y, multiply); } else if (y instanceof Matrix) { // scalar * matrix return new Matrix(collection.deepMap2(x, y.valueOf(), multiply)); } if (isBoolean(x) || x === null) { return multiply(+x, y); } if (isBoolean(y) || y === null) { return multiply(x, +y); } throw new math.error.UnsupportedTypeError('multiply', math['typeof'](x), math['typeof'](y)); }; /** * Multiply two 2-dimensional matrices. * The size of the matrices is not validated. * @param {Array} x A 2d matrix * @param {Array} y A 2d matrix * @return {Array | Number} result * @private */ function _multiplyMatrixMatrix(x, y) { // TODO: performance of matrix multiplication can be improved var res = [], rows = x.length, cols = y[0].length, num = x[0].length; for (var r = 0; r < rows; r++) { res[r] = []; for (var c = 0; c < cols; c++) { var result = null; for (var n = 0; n < num; n++) { var p = math.multiply(x[r][n], y[n][c]); result = (result === null) ? p : math.add(result, p); } res[r][c] = result; } } var isScalar = rows === 1 && cols === 1; return isScalar ? res[0][0] : res; } /** * Multiply a vector with a 2-dimensional matrix * The size of the matrices is not validated. * @param {Array} x A vector * @param {Array} y A 2d matrix * @return {Array | Number} result * @private */ function _multiplyVectorMatrix(x, y) { // TODO: performance of matrix multiplication can be improved var res = [], rows = y.length, cols = y[0].length; for (var c = 0; c < cols; c++) { var result = null; for (var r = 0; r < rows; r++) { var p = math.multiply(x[r], y[r][c]); result = (r === 0) ? p : math.add(result, p); } res[c] = result; } return res.length === 1 ? res[0] : res; } /** * Multiply a 2-dimensional matrix with a vector * The size of the matrices is not validated. * @param {Array} x A 2d matrix * @param {Array} y A vector * @return {Array | Number} result * @private */ function _multiplyMatrixVector(x, y) { // TODO: performance of matrix multiplication can be improved var res = [], rows = x.length, cols = x[0].length; for (var r = 0; r < rows; r++) { var result = null; for (var c = 0; c < cols; c++) { var p = math.multiply(x[r][c], y[c]); result = (c === 0) ? p : math.add(result, p); } res[r] = result; } return res.length === 1 ? res[0] : res; } /** * Multiply two vectors, calculate the dot product * The size of the matrices is not validated. * @param {Array} x A vector * @param {Array} y A vector * @return {Number} dotProduct * @private */ function _multiplyVectorVector(x, y) { // TODO: performance of matrix multiplication can be improved var len = x.length; if (!len) { throw new Error('Cannot multiply two empty vectors'); } var dot = 0; for (var i = 0; i < len; i++) { dot = math.add(dot, math.multiply(x[i], y[i])); } return dot; } /** * Multiply two complex numbers. x * y or multiply(x, y) * @param {Complex} x * @param {Complex} y * @return {Complex | Number} res * @private */ function _multiplyComplex (x, y) { // Note: we test whether x or y are pure real or pure complex, // to prevent unnecessary NaN values. For example, Infinity*i should // result in Infinity*i, and not in NaN+Infinity*i if (x.im == 0) { // x is pure real if (y.im == 0) { // y is pure real return new Complex(x.re * y.re, 0); } else if (y.re == 0) { // y is pure complex return new Complex( 0, x.re * y.im ); } else { // y has a real and complex part return new Complex( x.re * y.re, x.re * y.im ); } } else if (x.re == 0) { // x is pure complex if (y.im == 0) { // y is pure real return new Complex( 0, x.im * y.re ); } else if (y.re == 0) { // y is pure complex return new Complex(-x.im * y.im, 0); } else { // y has a real and complex part return new Complex( -x.im * y.im, x.im * y.re ); } } else { // x has a real and complex part if (y.im == 0) { // y is pure real return new Complex( x.re * y.re, x.im * y.re ); } else if (y.re == 0) { // y is pure complex return new Complex( -x.im * y.im, x.re * y.im ); } else { // y has a real and complex part return new Complex( x.re * y.re - x.im * y.im, x.re * y.im + x.im * y.re ); } } } };