'use strict'; module.exports = function (math) { var util = require('../../util/index'), BigNumber = math.type.BigNumber, Complex = require('../../type/Complex'), Unit = require('../../type/Unit'), collection = math.collection, isNumber = util.number.isNumber, isBoolean = util['boolean'].isBoolean, isComplex = Complex.isComplex, isUnit = Unit.isUnit, isCollection = collection.isCollection, bigCoth = util.bignumber.tanh_coth; /** * Calculate the hyperbolic cotangent of a value, * defined as `coth(x) = 1 / tanh(x)`. * * For matrices, the function is evaluated element wise. * * Syntax: * * math.coth(x) * * Examples: * * // coth(x) = 1 / tanh(x) * math.coth(2); // returns 1.0373147207275482 * 1 / math.tanh(2); // returns 1.0373147207275482 * * See also: * * sinh, tanh, cosh * * @param {Number | Boolean | Complex | Unit | Array | Matrix | null} x Function input * @return {Number | Complex | Array | Matrix} Hyperbolic cotangent of x */ math.coth = function coth(x) { if (arguments.length != 1) { throw new math.error.ArgumentsError('coth', arguments.length, 1); } if (isNumber(x)) { var e = Math.exp(2 * x); return (e + 1) / (e - 1); } if (isComplex(x)) { var r = Math.exp(2 * x.re); var re = r * Math.cos(2 * x.im); var im = r * Math.sin(2 * x.im); var den = (re - 1) * (re - 1) + im * im; return new Complex( ((re + 1) * (re - 1) + im * im) / den, -2 * im / den ); } if (isUnit(x)) { if (!x.hasBase(Unit.BASE_UNITS.ANGLE)) { throw new TypeError ('Unit in function coth is no angle'); } return coth(x.value); } if (isCollection(x)) { return collection.deepMap(x, coth); } if (isBoolean(x) || x === null) { return coth(x ? 1 : 0); } if (x instanceof BigNumber) { return bigCoth(x, BigNumber, true); } throw new math.error.UnsupportedTypeError('coth', math['typeof'](x)); }; };