'use strict'; var isInteger = require('../../util/number').isInteger; var bigLeftShift = require('../../util/bignumber').leftShift; function factory (type, config, load, typed) { var matrix = load(require('../../type/matrix/function/matrix')); var equalScalar = load(require('../relational/equalScalar')); var zeros = load(require('../matrix/zeros')); var algorithm01 = load(require('../../type/matrix/util/algorithm01')); var algorithm02 = load(require('../../type/matrix/util/algorithm02')); var algorithm08 = load(require('../../type/matrix/util/algorithm08')); var algorithm10 = load(require('../../type/matrix/util/algorithm10')); var algorithm11 = load(require('../../type/matrix/util/algorithm11')); var algorithm13 = load(require('../../type/matrix/util/algorithm13')); var algorithm14 = load(require('../../type/matrix/util/algorithm14')); /** * Bitwise left logical shift of a value x by y number of bits, `x << y`. * For matrices, the function is evaluated element wise. * For units, the function is evaluated on the best prefix base. * * Syntax: * * math.leftShift(x, y) * * Examples: * * math.leftShift(1, 2); // returns Number 4 * * math.leftShift([1, 2, 3], 4); // returns Array [16, 32, 64] * * See also: * * leftShift, bitNot, bitOr, bitXor, rightArithShift, rightLogShift * * @param {Number | BigNumber | Boolean | Array | Matrix | null} x Value to be shifted * @param {Number | BigNumber | Boolean | null} y Amount of shifts * @return {Number | BigNumber | Array | Matrix} `x` shifted left `y` times */ var leftShift = typed('leftShift', { 'number, number': function (x, y) { if (!isInteger(x) || !isInteger(y)) { throw new Error('Integers expected in function leftShift'); } return x << y; }, 'BigNumber, BigNumber': bigLeftShift, 'Matrix, Matrix': function (x, y) { // result var c; // process matrix storage switch (x.storage()) { case 'sparse': switch (y.storage()) { case 'sparse': // sparse & sparse c = algorithm08(x, y, leftShift, false); break; default: // sparse & dense c = algorithm02(y, x, leftShift, true); break; } break; default: switch (y.storage()) { case 'sparse': // dense & sparse c = algorithm01(x, y, leftShift, false); break; default: // dense & dense c = algorithm13(x, y, leftShift); break; } break; } return c; }, 'Array, Array': function (x, y) { // use matrix implementation return leftShift(matrix(x), matrix(y)).valueOf(); }, 'Array, Matrix': function (x, y) { // use matrix implementation return leftShift(matrix(x), y); }, 'Matrix, Array': function (x, y) { // use matrix implementation return leftShift(x, matrix(y)); }, 'Matrix, number | BigNumber': function (x, y) { // check scalar if (!equalScalar(y, 0)) { // result var c; // check storage format switch (x.storage()) { case 'sparse': c = algorithm11(x, y, leftShift, false); break; default: c = algorithm14(x, y, leftShift, false); break; } return c; } return x.clone(); }, 'number | BigNumber, Matrix': function (x, y) { // check scalar if (!equalScalar(x, 0)) { // result var c; // check storage format switch (y.storage()) { case 'sparse': c = algorithm10(y, x, leftShift, true); break; default: c = algorithm14(y, x, leftShift, true); break; } return c; } return zeros(y.size(), y.storage()); }, 'Array, number | BigNumber': function (x, y) { // use matrix implementation return leftShift(matrix(x), y).valueOf(); }, 'number | BigNumber, Array': function (x, y) { // use matrix implementation return leftShift(x, matrix(y)).valueOf(); } }); return leftShift; } exports.name = 'leftShift'; exports.factory = factory;