'use strict'; var isInteger = require('../../utils/number').isInteger; function factory (type, config, load, typed) { var matrix = load(require('../../type/matrix/function/matrix')); var algorithm01 = load(require('../../type/matrix/utils/algorithm01')); var algorithm04 = load(require('../../type/matrix/utils/algorithm04')); var algorithm10 = load(require('../../type/matrix/utils/algorithm10')); var algorithm13 = load(require('../../type/matrix/utils/algorithm13')); var algorithm14 = load(require('../../type/matrix/utils/algorithm14')); /** * Calculate the greatest common divisor for two or more values or arrays. * * For matrices, the function is evaluated element wise. * * Syntax: * * math.gcd(a, b) * math.gcd(a, b, c, ...) * * Examples: * * math.gcd(8, 12); // returns 4 * math.gcd(-4, 6); // returns 2 * math.gcd(25, 15, -10); // returns 5 * * math.gcd([8, -4], [12, 6]); // returns [4, 2] * * See also: * * lcm, xgcd * * @param {... number | BigNumber | Fraction | Array | Matrix} args Two or more integer numbers * @return {number | BigNumber | Fraction | Array | Matrix} The greatest common divisor */ var gcd = typed('gcd', { 'number, number': _gcd, 'BigNumber, BigNumber': _gcdBigNumber, 'Fraction, Fraction': function (x, y) { return x.gcd(y); }, 'Matrix, Matrix': function (x, y) { // result var c; // process matrix storage switch (x.storage()) { case 'sparse': switch (y.storage()) { case 'sparse': // sparse + sparse c = algorithm04(x, y, gcd); break; default: // sparse + dense c = algorithm01(y, x, gcd, true); break; } break; default: switch (y.storage()) { case 'sparse': // dense + sparse c = algorithm01(x, y, gcd, false); break; default: // dense + dense c = algorithm13(x, y, gcd); break; } break; } return c; }, 'Array, Array': function (x, y) { // use matrix implementation return gcd(matrix(x), matrix(y)).valueOf(); }, 'Array, Matrix': function (x, y) { // use matrix implementation return gcd(matrix(x), y); }, 'Matrix, Array': function (x, y) { // use matrix implementation return gcd(x, matrix(y)); }, 'Matrix, number | BigNumber': function (x, y) { // result var c; // check storage format switch (x.storage()) { case 'sparse': c = algorithm10(x, y, gcd, false); break; default: c = algorithm14(x, y, gcd, false); break; } return c; }, 'number | BigNumber, Matrix': function (x, y) { // result var c; // check storage format switch (y.storage()) { case 'sparse': c = algorithm10(y, x, gcd, true); break; default: c = algorithm14(y, x, gcd, true); break; } return c; }, 'Array, number | BigNumber': function (x, y) { // use matrix implementation return algorithm14(matrix(x), y, gcd, false).valueOf(); }, 'number | BigNumber, Array': function (x, y) { // use matrix implementation return algorithm14(matrix(y), x, gcd, true).valueOf(); }, // TODO: need a smarter notation here 'Array | Matrix | number | BigNumber, Array | Matrix | number | BigNumber, ...Array | Matrix | number | BigNumber': function (a, b, args) { var res = gcd(a, b); for (var i = 0; i < args.length; i++) { res = gcd(res, args[i]); } return res; } }); gcd.toTex = '\\gcd\\left(${args}\\right)'; return gcd; /** * Calculate gcd for BigNumbers * @param {BigNumber} a * @param {BigNumber} b * @returns {BigNumber} Returns greatest common denominator of a and b * @private */ function _gcdBigNumber(a, b) { if (!a.isInt() || !b.isInt()) { throw new Error('Parameters in function gcd must be integer numbers'); } // http://en.wikipedia.org/wiki/Euclidean_algorithm var zero = new type.BigNumber(0); while (!b.isZero()) { var r = a.mod(b); a = b; b = r; } return a.lt(zero) ? a.neg() : a; } } /** * Calculate gcd for numbers * @param {number} a * @param {number} b * @returns {number} Returns the greatest common denominator of a and b * @private */ function _gcd(a, b) { if (!isInteger(a) || !isInteger(b)) { throw new Error('Parameters in function gcd must be integer numbers'); } // http://en.wikipedia.org/wiki/Euclidean_algorithm var r; while (b != 0) { r = a % b; a = b; b = r; } return (a < 0) ? -a : a; } exports.name = 'gcd'; exports.factory = factory;