'use strict'; var util = require('../../utils/index'); var object = util.object; var string = util.string; function factory (type, config, load, typed) { var matrix = load(require('../../type/matrix/function/matrix')); var add = load(require('../arithmetic/add')); var subtract = load(require('../arithmetic/subtract')); var multiply = load(require('../arithmetic/multiply')); var unaryMinus = load(require('../arithmetic/unaryMinus')); var lup = load(require('../algebra/decomposition/lup')); /** * Calculate the determinant of a matrix. * * Syntax: * * math.det(x) * * Examples: * * math.det([[1, 2], [3, 4]]); // returns -2 * * var A = [ * [-2, 2, 3], * [-1, 1, 3], * [2, 0, -1] * ] * math.det(A); // returns 6 * * See also: * * inv * * @param {Array | Matrix} x A matrix * @return {number} The determinant of `x` */ var det = typed('det', { 'any': function (x) { return object.clone(x); }, 'Array | Matrix': function det (x) { var size; if (type.isMatrix(x)) { size = x.size(); } else if (Array.isArray(x)) { x = matrix(x); size = x.size(); } else { // a scalar size = []; } switch (size.length) { case 0: // scalar return object.clone(x); case 1: // vector if (size[0] == 1) { return object.clone(x.valueOf()[0]); } else { throw new RangeError('Matrix must be square ' + '(size: ' + string.format(size) + ')'); } case 2: // two dimensional array var rows = size[0]; var cols = size[1]; if (rows == cols) { return _det(x.clone().valueOf(), rows, cols); } else { throw new RangeError('Matrix must be square ' + '(size: ' + string.format(size) + ')'); } default: // multi dimensional array throw new RangeError('Matrix must be two dimensional ' + '(size: ' + string.format(size) + ')'); } } }); det.toTex = {1: '\\det\\left(${args[0]}\\right)'}; return det; /** * Calculate the determinant of a matrix * @param {Array[]} matrix A square, two dimensional matrix * @param {number} rows Number of rows of the matrix (zero-based) * @param {number} cols Number of columns of the matrix (zero-based) * @returns {number} det * @private */ function _det (matrix, rows, cols) { if (rows == 1) { // this is a 1 x 1 matrix return object.clone(matrix[0][0]); } else if (rows == 2) { // this is a 2 x 2 matrix // the determinant of [a11,a12;a21,a22] is det = a11*a22-a21*a12 return subtract( multiply(matrix[0][0], matrix[1][1]), multiply(matrix[1][0], matrix[0][1]) ); } else { // Compute the LU decomposition var decomp = lup(matrix); // The determinant is the product of the diagonal entries of U (and those of L, but they are all 1) var det = decomp.U[0][0]; for(var i=1; i= rows) break; var j=i; var cycleLen = 0; while(!visited[decomp.p[j]]) { visited[decomp.p[j]] = true; j = decomp.p[j]; cycleLen++; } if(cycleLen % 2 === 0) { evenCycles++; } } return evenCycles % 2 === 0 ? det : unaryMinus(det); } } } exports.name = 'det'; exports.factory = factory;