import { factory } from '../../utils/factory.js' import { createAlgorithm01 } from '../../type/matrix/utils/algorithm01.js' import { createAlgorithm02 } from '../../type/matrix/utils/algorithm02.js' import { createAlgorithm06 } from '../../type/matrix/utils/algorithm06.js' import { createAlgorithm11 } from '../../type/matrix/utils/algorithm11.js' import { createAlgorithm13 } from '../../type/matrix/utils/algorithm13.js' import { createAlgorithm14 } from '../../type/matrix/utils/algorithm14.js' import { nthRootNumber } from '../../plain/number/index.js' const name = 'nthRoot' const dependencies = [ 'typed', 'matrix', 'equalScalar', 'BigNumber' ] export const createNthRoot = /* #__PURE__ */ factory(name, dependencies, ({ typed, matrix, equalScalar, BigNumber }) => { const algorithm01 = createAlgorithm01({ typed }) const algorithm02 = createAlgorithm02({ typed, equalScalar }) const algorithm06 = createAlgorithm06({ typed, equalScalar }) const algorithm11 = createAlgorithm11({ typed, equalScalar }) const algorithm13 = createAlgorithm13({ typed }) const algorithm14 = createAlgorithm14({ typed }) /** * Calculate the nth root of a value. * The principal nth root of a positive real number A, is the positive real * solution of the equation * * x^root = A * * For matrices, the function is evaluated element wise. * * Syntax: * * math.nthRoot(a) * math.nthRoot(a, root) * * Examples: * * math.nthRoot(9, 2) // returns 3, as 3^2 == 9 * math.sqrt(9) // returns 3, as 3^2 == 9 * math.nthRoot(64, 3) // returns 4, as 4^3 == 64 * * See also: * * sqrt, pow * * @param {number | BigNumber | Array | Matrix | Complex} a * Value for which to calculate the nth root * @param {number | BigNumber} [root=2] The root. * @return {number | Complex | Array | Matrix} Returns the nth root of `a` */ const complexErr = ('' + 'Complex number not supported in function nthRoot. ' + 'Use nthRoots instead.' ) return typed(name, { number: function (x) { return nthRootNumber(x, 2) }, 'number, number': nthRootNumber, BigNumber: function (x) { return _bigNthRoot(x, new BigNumber(2)) }, Complex: function (x) { throw new Error(complexErr) }, 'Complex, number': function (x, y) { throw new Error(complexErr) }, 'BigNumber, BigNumber': _bigNthRoot, 'Array | Matrix': function (x) { return this(x, 2) }, 'SparseMatrix, SparseMatrix': function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse + sparse return algorithm06(x, y, this) } else { // throw exception throw new Error('Root must be non-zero') } }, 'SparseMatrix, DenseMatrix': function (x, y) { return algorithm02(y, x, this, true) }, 'DenseMatrix, SparseMatrix': function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // dense + sparse return algorithm01(x, y, this, false) } else { // throw exception throw new Error('Root must be non-zero') } }, 'DenseMatrix, DenseMatrix': function (x, y) { return algorithm13(x, y, this) }, 'Array, Array': function (x, y) { // use matrix implementation return this(matrix(x), matrix(y)).valueOf() }, 'Array, Matrix': function (x, y) { // use matrix implementation return this(matrix(x), y) }, 'Matrix, Array': function (x, y) { // use matrix implementation return this(x, matrix(y)) }, 'SparseMatrix, number | BigNumber': function (x, y) { return algorithm11(x, y, this, false) }, 'DenseMatrix, number | BigNumber': function (x, y) { return algorithm14(x, y, this, false) }, 'number | BigNumber, SparseMatrix': function (x, y) { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse - scalar return algorithm11(y, x, this, true) } else { // throw exception throw new Error('Root must be non-zero') } }, 'number | BigNumber, DenseMatrix': function (x, y) { return algorithm14(y, x, this, true) }, 'Array, number | BigNumber': function (x, y) { // use matrix implementation return this(matrix(x), y).valueOf() }, 'number | BigNumber, Array': function (x, y) { // use matrix implementation return this(x, matrix(y)).valueOf() } }) /** * Calculate the nth root of a for BigNumbers, solve x^root == a * https://rosettacode.org/wiki/Nth_root#JavaScript * @param {BigNumber} a * @param {BigNumber} root * @private */ function _bigNthRoot (a, root) { const precision = BigNumber.precision const Big = BigNumber.clone({ precision: precision + 2 }) const zero = new BigNumber(0) const one = new Big(1) const inv = root.isNegative() if (inv) { root = root.neg() } if (root.isZero()) { throw new Error('Root must be non-zero') } if (a.isNegative() && !root.abs().mod(2).equals(1)) { throw new Error('Root must be odd when a is negative.') } // edge cases zero and infinity if (a.isZero()) { return inv ? new Big(Infinity) : 0 } if (!a.isFinite()) { return inv ? zero : a } let x = a.abs().pow(one.div(root)) // If a < 0, we require that root is an odd integer, // so (-1) ^ (1/root) = -1 x = a.isNeg() ? x.neg() : x return new BigNumber((inv ? one.div(x) : x).toPrecision(precision)) } }) export const createNthRootNumber = /* #__PURE__ */ factory(name, ['typed'], ({ typed }) => { return typed(name, { number: nthRootNumber, 'number, number': nthRootNumber }) })