import { factory } from '../../utils/factory' import { combinationsNumber } from '../../plain/number/combinations' const name = 'combinations' const dependencies = ['typed'] export const createCombinations = /* #__PURE__ */ factory(name, dependencies, ({ typed }) => { /** * Compute the number of ways of picking `k` unordered outcomes from `n` * possibilities. * * Combinations only takes integer arguments. * The following condition must be enforced: k <= n. * * Syntax: * * math.combinations(n, k) * * Examples: * * math.combinations(7, 5) // returns 21 * * See also: * * combinationsWithRep, permutations, factorial * * @param {number | BigNumber} n Total number of objects in the set * @param {number | BigNumber} k Number of objects in the subset * @return {number | BigNumber} Number of possible combinations. */ return typed(name, { 'number, number': combinationsNumber, 'BigNumber, BigNumber': function (n, k) { const BigNumber = n.constructor let result, i const nMinusk = n.minus(k) const one = new BigNumber(1) if (!isPositiveInteger(n) || !isPositiveInteger(k)) { throw new TypeError('Positive integer value expected in function combinations') } if (k.gt(n)) { throw new TypeError('k must be less than n in function combinations') } result = one if (k.lt(nMinusk)) { for (i = one; i.lte(nMinusk); i = i.plus(one)) { result = result.times(k.plus(i)).dividedBy(i) } } else { for (i = one; i.lte(k); i = i.plus(one)) { result = result.times(nMinusk.plus(i)).dividedBy(i) } } return result } // TODO: implement support for collection in combinations }) }) /** * Test whether BigNumber n is a positive integer * @param {BigNumber} n * @returns {boolean} isPositiveInteger */ function isPositiveInteger (n) { return n.isInteger() && n.gte(0) }