const assert = require('assert') const error = require('../../../src/error/index') const _ = require('underscore') const math = require('../../../src/main') math.import(require('../../../src/function/probability/distribution')) const Matrix = math.type.Matrix const distribution = math.distribution const assertApproxEqual = function (testVal, val, tolerance) { const diff = Math.abs(val - testVal) if (diff > tolerance) assert.strictEqual(testVal, val) else assert.ok(diff <= tolerance) } const assertUniformDistribution = function (values, min, max) { const interval = (max - min) / 10 let count let i count = _.filter(values, function (val) { return val < min }).length assert.strictEqual(count, 0) count = _.filter(values, function (val) { return val > max }).length assert.strictEqual(count, 0) for (i = 0; i < 10; i++) { count = _.filter(values, function (val) { return val >= (min + i * interval) && val < (min + (i + 1) * interval) }).length assertApproxEqual(count / values.length, 0.1, 0.02) } } const assertUniformDistributionInt = function (values, min, max) { const range = _.range(Math.floor(min), Math.floor(max)) let count values.forEach(function (val) { assert.ok(_.contains(range, val)) }) range.forEach(function (val) { count = _.filter(values, function (testVal) { return testVal === val }).length assertApproxEqual(count / values.length, 1 / range.length, 0.03) }) } describe('distribution', function () { let uniformDistrib before(function () { // Seed Random Number Generator for Reproducibility math.config({ randomSeed: 'test' }) }) after(function () { // Randomly seed random number generator math.config({ randomSeed: null }) }) beforeEach(function () { uniformDistrib = distribution('uniform') }) describe('random', function () { it('should pick uniformly distributed numbers in [0, 1]', function () { const picked = [] _.times(1000, function () { picked.push(uniformDistrib.random()) }) assertUniformDistribution(picked, 0, 1) }) it('should pick uniformly distributed numbers in [min, max]', function () { const picked = [] _.times(1000, function () { picked.push(uniformDistrib.random(-10, 10)) }) assertUniformDistribution(picked, -10, 10) }) it('should pick uniformly distributed random array, with elements in [0, 1]', function () { const picked = [] const matrices = [] const size = [2, 3, 4] _.times(100, function () { matrices.push(uniformDistrib.random(size)) }) // Collect all values in one array matrices.forEach(function (matrix) { assert(Array.isArray(matrix)) assert.deepStrictEqual(math.size(matrix), size) math.forEach(matrix, function (val) { picked.push(val) }) }) assert.strictEqual(picked.length, 2 * 3 * 4 * 100) assertUniformDistribution(picked, 0, 1) }) it('should pick uniformly distributed random array, with elements in [0, max]', function () { const picked = [] const matrices = [] const size = [2, 3, 4] _.times(100, function () { matrices.push(uniformDistrib.random(size, 8)) }) // Collect all values in one array matrices.forEach(function (matrix) { assert(Array.isArray(matrix)) assert.deepStrictEqual(math.size(matrix), size) math.forEach(matrix, function (val) { picked.push(val) }) }) assert.strictEqual(picked.length, 2 * 3 * 4 * 100) assertUniformDistribution(picked, 0, 8) }) it('should pick uniformly distributed random matrix, with elements in [0, 1]', function () { const picked = [] const matrices = [] const size = math.matrix([2, 3, 4]) _.times(100, function () { matrices.push(uniformDistrib.random(size)) }) // Collect all values in one array matrices.forEach(function (matrix) { assert(matrix instanceof Matrix) assert.deepStrictEqual(matrix.size(), size.valueOf()) matrix.forEach(function (val) { picked.push(val) }) }) assert.strictEqual(picked.length, 2 * 3 * 4 * 100) assertUniformDistribution(picked, 0, 1) }) it('should pick uniformly distributed random array, with elements in [min, max]', function () { const picked = [] const matrices = [] const size = [2, 3, 4] _.times(100, function () { matrices.push(uniformDistrib.random(size, -103, 8)) }) // Collect all values in one array matrices.forEach(function (matrix) { assert.deepStrictEqual(math.size(matrix), size) math.forEach(matrix, function (val) { picked.push(val) }) }) assert.strictEqual(picked.length, 2 * 3 * 4 * 100) assertUniformDistribution(picked, -103, 8) }) it('should throw an error if called with invalid arguments', function () { assert.throws(function () { uniformDistrib.random(1, 2, [4, 8]) }) assert.throws(function () { uniformDistrib.random(1, 2, 3, 6) }) assert.throws(function () { uniformDistrib.random('str', 10) }) assert.throws(function () { uniformDistrib.random(math.bignumber(-10), 10) }) }) }) describe('randomInt', function () { it('should pick uniformly distributed integers in [min, max)', function () { const picked = [] _.times(10000, function () { picked.push(uniformDistrib.randomInt(-15, -5)) }) assertUniformDistributionInt(picked, -15, -5) }) it('should pick uniformly distributed random array, with elements in [min, max)', function () { const picked = [] const matrices = [] const size = [2, 3, 4] _.times(1000, function () { matrices.push(uniformDistrib.randomInt(size, -14.9, -2)) }) // Collect all values in one array matrices.forEach(function (matrix) { assert.deepStrictEqual(math.size(matrix), size) math.forEach(matrix, function (val) { picked.push(val) }) }) assert.strictEqual(picked.length, 2 * 3 * 4 * 1000) assertUniformDistributionInt(picked, -14.9, -2) }) it('should throw an error if called with invalid arguments', function () { assert.throws(function () { uniformDistrib.randomInt(1, 2, [4, 8]) }) assert.throws(function () { uniformDistrib.randomInt(1, 2, 3, 6) }) }) }) describe('pickRandom', function () { it('should throw an error when providing a multi dimensional matrix', function () { assert.throws(function () { uniformDistrib.pickRandom(math.matrix([[1, 2], [3, 4]])) }, /Only one dimensional vectors supported/) }) it('should throw an error if the length of the weights does not match the length of the possibles', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 5, 2, 4] const number = 2 assert.throws(function () { uniformDistrib.pickRandom(possibles, weights) }, /Weights must have the same length as possibles/) assert.throws(function () { uniformDistrib.pickRandom(possibles, number, weights) }, /Weights must have the same length as possibles/) assert.throws(function () { uniformDistrib.pickRandom(possibles, weights, number) }, /Weights must have the same length as possibles/) }) it('should throw an error if the weights array contains a non number or negative value', function () { const possibles = [11, 22, 33, 44, 55] let weights = [1, 5, 2, -1, 6] assert.throws(function () { uniformDistrib.pickRandom(possibles, weights) }, /Weights must be an array of positive numbers/) weights = [1, 5, 2, 'stinky', 6] assert.throws(function () { uniformDistrib.pickRandom(possibles, weights) }, /Weights must be an array of positive numbers/) }) it('should return a single value if no number argument was passed', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 5, 2, 4, 6] assert.notStrictEqual(possibles.indexOf(uniformDistrib.pickRandom(possibles)), -1) assert.notStrictEqual(possibles.indexOf(uniformDistrib.pickRandom(possibles, weights)), -1) }) it('should return a single value if no number argument was passed (2)', function () { const possibles = [5] assert.strictEqual(uniformDistrib.pickRandom(possibles), 5) }) it('should return the given array if the given number is equal its length', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 5, 2, 4, 6] const number = 5 assert.strictEqual(uniformDistrib.pickRandom(possibles, number), possibles) assert.strictEqual(uniformDistrib.pickRandom(possibles, number, weights), possibles) assert.strictEqual(uniformDistrib.pickRandom(possibles, weights, number), possibles) }) it('should return the given array if the given number is greater than its length', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 5, 2, 4, 6] const number = 6 assert.strictEqual(uniformDistrib.pickRandom(possibles, number), possibles) assert.strictEqual(uniformDistrib.pickRandom(possibles, number, weights), possibles) assert.strictEqual(uniformDistrib.pickRandom(possibles, weights, number), possibles) }) it('should return an empty array if the given number is 0', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 5, 2, 4, 6] const number = 0 assert.strictEqual(uniformDistrib.pickRandom(possibles, number).length, 0) assert.strictEqual(uniformDistrib.pickRandom(possibles, number, weights).length, 0) assert.strictEqual(uniformDistrib.pickRandom(possibles, weights, number).length, 0) }) it('should return an array of length 1 if the number passed is 1', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 5, 2, 4, 6] const number = 1 assert(Array.isArray(uniformDistrib.pickRandom(possibles, number))) assert(Array.isArray(uniformDistrib.pickRandom(possibles, number, weights))) assert(Array.isArray(uniformDistrib.pickRandom(possibles, weights, number))) assert.strictEqual(uniformDistrib.pickRandom(possibles, number).length, 1) assert.strictEqual(uniformDistrib.pickRandom(possibles, number, weights).length, 1) assert.strictEqual(uniformDistrib.pickRandom(possibles, weights, number).length, 1) }) it('should pick the given number of values from the given array', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 5, 2, 4, 6] const number = 3 assert.strictEqual(uniformDistrib.pickRandom(possibles, number).length, number) assert.strictEqual(uniformDistrib.pickRandom(possibles, number, weights).length, number) assert.strictEqual(uniformDistrib.pickRandom(possibles, weights, number).length, number) }) it('should pick a value from the given array following an uniform distribution if only possibles are passed', function () { const possibles = [11, 22, 33, 44, 55] const picked = [] let count _.times(1000, function () { picked.push(uniformDistrib.pickRandom(possibles)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) }) it('should pick a value from the given matrix following an uniform distribution', function () { const possibles = math.matrix([11, 22, 33, 44, 55]) const picked = [] let count _.times(1000, function () { picked.push(uniformDistrib.pickRandom(possibles)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) }) it('should pick a given number of values from the given array following an uniform distribution if no weights were passed', function () { const possibles = [11, 22, 33, 44, 55] const number = 2 const picked = [] let count _.times(1000, function () { picked.push.apply(picked, uniformDistrib.pickRandom(possibles, number)) }) assert.strictEqual(picked.length, 2000) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) }) it('should pick numbers from the given matrix following an uniform distribution', function () { const possibles = math.matrix([11, 22, 33, 44, 55]) const number = 3 const picked = [] let count _.times(1000, function () { picked.push.apply(picked, uniformDistrib.pickRandom(possibles, number)) }) assert.strictEqual(picked.length, 3000) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) }) it('should pick a value from the given array following a weighted distribution', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 4, 0, 2, 3] const picked = [] let count _.times(1000, function () { picked.push(uniformDistrib.pickRandom(possibles, weights)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.1) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round((count) / picked.length, 1), 0.4) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.3) }) it('should pick a value from the given matrix following a weighted distribution', function () { const possibles = math.matrix([11, 22, 33, 44, 55]) const weights = [1, 4, 0, 2, 3] const picked = [] let count _.times(1000, function () { picked.push(uniformDistrib.pickRandom(possibles, weights)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.1) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round((count) / picked.length, 1), 0.4) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.3) }) it('should return an array of values from the given array following a weighted distribution', function () { const possibles = [11, 22, 33, 44, 55] const weights = [1, 4, 0, 2, 3] const number = 2 const picked = [] let count _.times(1000, function () { picked.push.apply(picked, uniformDistrib.pickRandom(possibles, number, weights)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.1) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round((count) / picked.length, 1), 0.4) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.3) _.times(1000, function () { picked.push.apply(picked, uniformDistrib.pickRandom(possibles, weights, number)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.1) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round((count) / picked.length, 1), 0.4) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.3) }) it('should return an array of values from the given matrix following a weighted distribution', function () { const possibles = math.matrix([11, 22, 33, 44, 55]) const weights = [1, 4, 0, 2, 3] const number = 2 const picked = [] let count _.times(1000, function () { picked.push.apply(picked, uniformDistrib.pickRandom(possibles, number, weights)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.1) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round((count) / picked.length, 1), 0.4) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.3) _.times(1000, function () { picked.push.apply(picked, uniformDistrib.pickRandom(possibles, weights, number)) }) count = _.filter(picked, function (val) { return val === 11 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.1) count = _.filter(picked, function (val) { return val === 22 }).length assert.strictEqual(math.round((count) / picked.length, 1), 0.4) count = _.filter(picked, function (val) { return val === 33 }).length assert.strictEqual(math.round(count / picked.length, 1), 0) count = _.filter(picked, function (val) { return val === 44 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.2) count = _.filter(picked, function (val) { return val === 55 }).length assert.strictEqual(math.round(count / picked.length, 1), 0.3) }) }) describe('distribution.normal', function () { it('should pick numbers in [0, 1] following a normal distribution', function () { const picked = [] let count const dist = distribution('normal') _.times(100000, function () { picked.push(dist.random()) }) count = _.filter(picked, function (val) { return val < 0 }).length assert.strictEqual(count, 0) count = _.filter(picked, function (val) { return val > 1 }).length assert.strictEqual(count, 0) count = _.filter(picked, function (val) { return val < 0.25 }).length assertApproxEqual(count / picked.length, 0.07, 0.01) count = _.filter(picked, function (val) { return val < 0.4 }).length assertApproxEqual(count / picked.length, 0.27, 0.01) count = _.filter(picked, function (val) { return val < 0.5 }).length assertApproxEqual(count / picked.length, 0.5, 0.01) count = _.filter(picked, function (val) { return val < 0.6 }).length assertApproxEqual(count / picked.length, 0.73, 0.01) count = _.filter(picked, function (val) { return val < 0.75 }).length assertApproxEqual(count / picked.length, 0.93, 0.01) }) }) it('should throw an error in case of unknown distribution name', function () { assert.throws(function () { distribution('non-existing') }, /Unknown distribution/) }) it('created random functions should throw an error in case of wrong number of arguments', function () { const dist = distribution('uniform') assert.throws(function () { dist.random([2, 3], 10, 100, 12) }, error.ArgumentsError) assert.throws(function () { dist.randomInt([2, 3], 10, 100, 12) }, error.ArgumentsError) assert.throws(function () { dist.pickRandom() }, error.ArgumentsError) assert.throws(function () { dist.pickRandom([], 23, [], 9) }, error.ArgumentsError) }) it('created random functions should throw an error in case of wrong type of arguments', function () { const dist = distribution('uniform') assert.throws(function () { dist.pickRandom(23) }, error.TypeError) // TODO: more type testing... }) it('should LaTeX distribution', function () { const expression = math.parse('distribution("normal")') assert.strictEqual(expression.toTex(), '\\mathrm{distribution}\\left(\\mathtt{"normal"}\\right)') }) })