/** * @constructor det * Calculate the determinant of a matrix * * det(x) * * @param {Array | Matrix} x * @return {Number} determinant */ math.det = function det (x) { if (arguments.length != 1) { throw newArgumentsError('det', arguments.length, 1); } var size = math.size(x); switch (size.length) { case 0: // scalar return math.clone(x); break; case 1: // vector if (size[0] == 1) { return math.clone(x.valueOf()[0]); } else { throw new RangeError('Matrix must be square ' + '(size: ' + math.format(size) + ')'); } break; case 2: // two dimensional array var rows = size[0]; var cols = size[1]; if (rows == cols) { return _det(x.valueOf(), rows, cols); } else { throw new RangeError('Matrix must be square ' + '(size: ' + math.format(size) + ')'); } break; default: // multi dimensional array throw new RangeError('Matrix must be two dimensional ' + '(size: ' + math.format(size) + ')'); } }; /** * Calculate the determinant of a matrix * @param {Array[]} matrix A square, two dimensional matrix * @param {Number} rows Number of rows of the matrix (zero-based) * @param {Number} cols Number of columns of the matrix (zero-based) * @returns {Number} det * @private */ function _det (matrix, rows, cols) { var multiply = math.multiply, subtract = math.subtract; // this is a square matrix if (rows == 1) { // this is a 1 x 1 matrix return matrix[0][0]; } else if (rows == 2) { // this is a 2 x 2 matrix // the determinant of [a11,a12;a21,a22] is det = a11*a22-a21*a12 return subtract( multiply(matrix[0][0], matrix[1][1]), multiply(matrix[1][0], matrix[0][1]) ); } else { var det = 1; var lead = 0; for (var r = 0; r < rows; r++) { if (lead >= cols) { break; } var i = r; // Find the pivot element. while (matrix[i][lead] == 0) { i++; if (i == rows) { i = r; lead++; if (lead == cols) { // We found the last pivot. if (util.deepEqual(matrix, math.eye(rows).valueOf())) { return math.round(det, 6); } else { return 0; } } } } if (i != r) { // Swap rows i and r, which negates the determinant. for (var a = 0; a < cols; a++) { var temp = matrix[i][a]; matrix[i][a] = matrix[r][a]; matrix[r][a] = temp; } det *= -1; } // Scale row r and the determinant simultaneously. var div = matrix[r][lead]; for (var a = 0; a < cols; a++) { matrix[r][a] = matrix[r][a] / div; } det *= div; // Back-substitute upwards. for (var j = 0; j < rows; j++) { if (j != r) { // Taking linear combinations does not change the det. var c = matrix[j][lead]; for (var a = 0; a < cols; a++) { matrix[j][a] = matrix[j][a] - matrix[r][a] * c; } } } lead++; // Now looking for a pivot further right. } // If reduction did not result in the identity, the matrix is singular. if (util.deepEqual(matrix, math.eye(rows).valueOf())) { return math.round(det, 6); } else { return 0; } } }