'use strict'; function factory (type, config, load) { var divideScalar = load(require('../../arithmetic/divideScalar')); var multiply = load(require('../../arithmetic/multiply')); var subtract = load(require('../../arithmetic/subtract')); var cs_reach = load(require('./cs_reach')); /** * The function cs_spsolve() computes the solution to G * x = bk, where bk is the * kth column of B. When lo is true, the function assumes G = L is lower triangular with the * diagonal entry as the first entry in each column. When lo is true, the function assumes G = U * is upper triangular with the diagonal entry as the last entry in each column. * * @param {Matrix} g The G matrix * @param {Matrix} b The B matrix * @param {Number} k The kth column in B * @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n * The first n entries is the nonzero pattern, the last n entries is the stack * @param {Array} x The soluton to the linear system G * x = b * @param {Array} pinv The inverse row permutation vector, must be null for L * x = b * @param {boolean} lo The lower (true) upper triangular (false) flag * * @return {Number} The index for the nonzero pattern * * Reference: http://faculty.cse.tamu.edu/davis/publications.html */ var cs_spsolve = function (g, b, k, xi, x, pinv, lo) { // g arrays var gvalues = g._values; var gindex = g._index; var gptr = g._ptr; var gsize = g._size; // columns var n = gsize[1]; // b arrays var bvalues = b._values; var bindex = b._index; var bptr = b._ptr; // vars var p, p0, p1, q; // xi[top..n-1] = cs_reach(B(:,k)) var top = cs_reach(g, b, k, xi, pinv); // clear x for (p = top; p < n; p++) x[xi[p]] = 0; // scatter b for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) x[bindex[p]] = bvalues[p]; // loop columns for (var px = top; px < n; px++) { // x array index for px var j = xi[px]; // apply permutation vector (U x = b), j maps to column J of G var J = pinv ? pinv[j] : j; // check column J is empty if (J < 0) continue; // column value indeces in G, p0 <= p < p1 p0 = gptr[J]; p1 = gptr[J + 1]; // x(j) /= G(j,j) x[j] = divideScalar(x[j], gvalues[lo ? p0 : (p1 - 1)]); // first entry L(j,j) p = lo ? (p0 + 1) : p0; q = lo ? (p1) : (p1 - 1); // loop for ( ; p < q ; p++) { // row var i = gindex[p]; // x(i) -= G(i,j) * x(j) x[i] = subtract(x[i], multiply(gvalues[p], x[j])); } } // return top of stack return top; }; return cs_spsolve; } exports.name = 'cs_spsolve'; exports.path = 'sparse'; exports.factory = factory;