'use strict'; module.exports = function (math) { var util = require('../../util/index'); var Matrix = math.type.Matrix; var isNumber = util.number.isNumber; var isInteger = util.number.isInteger; /** * Partition-based selection of an array or 1D matrix. * Will find the kth smallest value, and mutates the input array. * Currently uses Quickselect. * * Syntax: * * math.partitionSelect(x, k) * math.partitionSelect(x, k, compare) * * Examples: * * math.partitionSelect([5, 10, 1], 2); // returns 10 * math.partitionSelect(['C', 'B', 'A', 'D'], 1); // returns 'B' * * function sortByLength (a, b) { * return a.length - b.length; * } * math.partitionSelect(['Langdon', 'Tom', 'Sara'], 2, sortByLength); // returns 'Langdon' * * See also: * * sort * * @param {Matrix | Array} x A one dimensional matrix or array to sort * @param {Number} k The kth smallest value to be retrieved; zero-based index * @param {Function | 'asc' | 'desc'} [compare='asc'] * An optional comparator function. The function is called as * `compare(a, b)`, and must return 1 when a > b, -1 when a < b, * and 0 when a == b. * @return {*} Returns the kth lowest value. */ math.partitionSelect = function (x, k, compare) { var _compare; if (arguments.length === 2) { _compare = math.compare; } else if (arguments.length === 3) { if (typeof compare === 'function') { _compare = compare; } else if (compare === 'asc') { _compare = math.compare; } else if (compare === 'desc') { _compare = function (a, b) { return -math.compare(a, b); } } else { throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](compare)); } } else { throw new math.error.ArgumentsError('partitionSelect', arguments.length, 2, 3); } if (isNumber(k)) { if (isInteger(k) && k >= 0) { if (x instanceof Matrix) { var size = x.size(); if (size.length > 1) { throw new Error('Only one dimensional matrices supported'); } return quickselect(x.valueOf(), k, _compare); } if (Array.isArray(x)) { return quickselect(x, k, _compare); } throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](x)); } throw new Error('k must be a non-negative integer'); } throw new math.error.UnsupportedTypeError('partitionSelect', math['typeof'](k)); }; /** * Quickselect algorithm. * Code adapted from: * http://blog.teamleadnet.com/2012/07/quick-select-algorithm-find-kth-element.html * * @param {Array} arr * @param {Number} k * @param {Function} compare * @private */ function quickselect(arr, k, compare) { if (k >= arr.length) { throw new Error('k out of bounds'); } var from = 0; var to = arr.length - 1; // if from == to we reached the kth element while (from < to) { var r = from; var w = to; var pivot = arr[Math.floor(Math.random() * (to - from + 1)) + from]; // stop if the reader and writer meets while (r < w) { // arr[r] >= pivot if (compare(arr[r], pivot) >= 0) { // put the large values at the end var tmp = arr[w]; arr[w] = arr[r]; arr[r] = tmp; --w; } else { // the value is smaller than the pivot, skip ++r; } } // if we stepped up (r++) we need to step one down (arr[r] > pivot) if (compare(arr[r], pivot) > 0) { --r; } // the r pointer is on the end of the first k elements if (k <= r) { to = r; } else { from = r + 1; } } return arr[k]; } };